Mathematical Modelling and Analysis
Latest Publications


TOTAL DOCUMENTS

975
(FIVE YEARS 117)

H-INDEX

21
(FIVE YEARS 3)

Published By Vilnius Gediminas Technical University

1648-3510, 1392-6292

2021 ◽  
Vol 26 (4) ◽  
pp. 669-683
Author(s):  
Farah Balaadich ◽  
Elhoussine Azroul

In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described by f and the motion by g. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.


2021 ◽  
Vol 26 (4) ◽  
pp. 651-668
Author(s):  
Konstantinas Pileckas ◽  
Alicija Raciene

The boundary value problem for the steady Navier–Stokes system is considered in a 2D bounded domain with the boundary having a power cusp singularity at the point O. The case of a boundary value with a nonzero flow rate is studied. In this case there is a source/sink in O and the solution necessarily has an infinite Dirichlet integral. The formal asymptotic expansion of the solution near the singular point is constructed and the existence of a solution having this asymptotic decomposition is proved.


2021 ◽  
Vol 26 (4) ◽  
pp. 631-650
Author(s):  
Milan Medveď ◽  
Eva Brestovanská

In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.


2021 ◽  
Vol 26 (4) ◽  
pp. 684-695
Author(s):  
Jöel Chaskalovic ◽  
Franck Assous

We propose a numerical validation of a probabilistic approach applied to estimate the relative accuracy between two Lagrange finite elements Pk and Pm,(k < m). In particular, we show practical cases where finite element Pk gives more accurate results than finite element Pm. This illustrates the theoretical probabilistic framework we recently derived in order to evaluate the actual accuracy. This also highlights the importance of the extra caution required when comparing two numerical methods, since the classical results of error estimates concerns only the asymptotic convergence rate.


2021 ◽  
Vol 26 (4) ◽  
pp. 612-630
Author(s):  
Armands Gritsans ◽  
Inara Yermachenko

We consider a second order scalar conservative differential equation whose potential function is a Morse function with a finite number of critical points and is unbounded at infinity. We give an upper bound for the number of nonglobal nontrivial period annuli of the equation and prove that the upper bound obtained is sharp. We use tree theory in our considerations.


2021 ◽  
Vol 26 (4) ◽  
pp. 591-611
Author(s):  
Emile Franc Doungmo Goufo ◽  
Chokkalingam Ravichandran ◽  
Gunvant A. Birajdar

Highly applied in machining, image compressing, network traffic prediction, biological dynamics, nerve dendrite pattern and so on, self-similarity dynamic represents a part of fractal processes where an object is reproduced exactly or approximately exact to a part of itself. These reproduction processes are also very important and captivating in chaos theory. They occur naturally in our environment in the form of growth spirals, romanesco broccoli, trees and so on. Seeking alternative ways to reproduce self-similarity dynamics has called the attention of many authors working in chaos theory since the range of applications is quite wide. In this paper, three combined notions, namely the step series switching process, the Julia’s technique and the fractal-fractional dynamic are used to create various forms of self-similarity dynamics in chaotic systems of attractors, initially with two, five and seven scrolls. In each case, the solvability of the model is addressed via numerical techniques and related graphical simulations are provided. It appears that the initial systems are able to trigger a self-similarity process that generates the exact or approximately exact copy of itself or part of itself. Moreover, the dynamics of the copies are impacted by some model’s parameters involved in the process. Using mathematical concepts to re-create features that usually occur in a natural way proves to be a prowess as related applications are many for engineers.


2021 ◽  
Vol 26 (4) ◽  
pp. 566-581
Author(s):  
Kassimu Mpungu ◽  
Tijani A. Apalara

In this article, we consider a system of laminated beams with an internal constant delay term in the transverse displacement. We prove that the dissipation through structural damping at the interface is strong enough to exponentially stabilize the system under suitable assumptions on delay feedback and coefficients of wave propagation speed.


2021 ◽  
Vol 26 (4) ◽  
pp. 548-565
Author(s):  
Feliz Minhós ◽  
Rui Carapinha

In this paper, we improve the existing results in the literature by presenting weaker sufficient conditions for the solvability of a third-order impulsive problem on the half-line, having generalized impulse effects. More precisely, our nonlinearities do not need to be positive nor sublinear and the monotone assumptions are local ones. Our method makes use of some truncation and perturbed techniques and on the equiconvergence at infinity and the impulsive points. The last section contains an application to a boundary layer flow problem over a stretching sheet with and without heat transfer.


2021 ◽  
Vol 26 (4) ◽  
pp. 582-590
Author(s):  
Imre Ferenc Barna ◽  
László Mátyás

We investigate a one dimensional flow described with the non-compressible coupled Euler and non-compressible Navier-Stokes equations in the Cartesian coordinate system. We couple the two fluids through the continuity equation where different void fractions can be considered. The well-known self-similar Ansatz was applied and analytic solutions were derived for both velocity and pressure field as well.


2021 ◽  
Vol 26 (4) ◽  
pp. 519-527
Author(s):  
Jishan Fan ◽  
Peng Wang ◽  
Yong Zhou

In this paper, we are concerned with the uniform regularity estimates of smooth solutions to the isentropic compressible magneto-micropolar system in T3. Under the assumption that , and by applying the classic bilinear commutator and product estimates, the uniform estimates of solutions to the isentropic compressible magneto-micropolar system are established in space, .


Sign in / Sign up

Export Citation Format

Share Document