Symbiosis
Latest Publications


TOTAL DOCUMENTS

835
(FIVE YEARS 225)

H-INDEX

32
(FIVE YEARS 5)

Published By Springer-Verlag

1878-7665, 0334-5114

Symbiosis ◽  
2022 ◽  
Author(s):  
Todd C. LaJeunesse ◽  
Anastazia T. Banaszak ◽  
Charles R. Fisher ◽  
J. Malcolm Shick ◽  
Mark E. Warner ◽  
...  

Symbiosis ◽  
2022 ◽  
Author(s):  
Braulio Riviezzi ◽  
Guillem Campmajó ◽  
Célica Cagide ◽  
Esther Carrera ◽  
Javier Saurina ◽  
...  

Symbiosis ◽  
2022 ◽  
Author(s):  
Tancredo Souza ◽  
Izabelle Cristine Barros ◽  
Lucas Jónatan Rodrigues da Silva ◽  
Lídia Klestadt Laurindo ◽  
Gislaine dos Santos Nascimento ◽  
...  

Symbiosis ◽  
2021 ◽  
Author(s):  
Katalin Veres ◽  
Zsolt Csintalan ◽  
Zsanett Laufer ◽  
Rita Engel ◽  
Krisztina Szabó ◽  
...  

AbstractIn lichens, each symbiotic partner cooperates for the survival of the symbiotic association. The protection of the susceptible photosynthetic apparatus is essential for both participants. The mycobiont and photobiont contribute to the protection against the damaging effect of excess light by various mechanisms. The present study investigated the effect of seasonality and microhabitat exposure on photoprotection and photoacclimation in the photo- and the mycobiont of six lichen species with different thallus morphology in inland dune system in the Kiskunság region (Hungary) with shaded, more humid and exposed, drier dune sides. High-Performance Liquid Chromatography, spectrophotometry, chlorophyll a fluorescence kinetic technique were used, and micrometeorological data were collected. The four years data series revealed that the north-east-facing side was characterized by higher relative humidity and lower light intensities compared to the south-west-facing drier and more exposed sides. The south-west facing side was exposed to direct illumination 3–4 hours longer in winter and 1–2 hours shorter in summer than the north-east facing side of the dune, influencing the metabolism of sun and shade populations of various species. Because rapid desiccation caused short active periods of lichens during bright and drier seasons and on exposed microhabitats, the rapid, non-regulated non-photochemical quenching mechanisms in the photobiont had a significant role in protecting the photosynthetic system in the hydrated state. In dehydrated conditions, thalli were mainly defended by the solar screening metabolites produced by the mycobiont and curling during desiccation (also caused by the mycobiont). Furthermore, the efficacy of light use (higher chlorophyll and carotenoid concentration) increased because of short hydrated periods. Still, a lower level of received irradiation was appropriate for photosynthesis in dry seasons and on sun exposed habitats. In humid seasons and microhabitats, more extended active periods lead to increased photosynthesis and production of solar radiation protectant fungal metabolites, allowing a lower level of photoprotection in the form of regulated non-photochemical quenching by the photobiont. Interspecific differences were more pronounced than the intraspecific ones among seasons and microhabitat types.


Symbiosis ◽  
2021 ◽  
Author(s):  
Mohamed N. Al-Yahya’ei ◽  
Janusz Błaszkowski ◽  
Hamood Al-Hashmi ◽  
Khaled Al-Farsi ◽  
Ismail Al-Rashdi ◽  
...  

Abstract The vegetation in the Arabian Peninsula experiences drought, heat, soil salinity, and low fertility, mainly due to low phosphorus (P) availability. The beneficial mycorrhizal symbiosis between plants and arbuscular mycorrhizal fungi (AMF) is a key factor supporting plant growth under such environmental conditions. Therefore, AMF strains isolated from these soils might be useful as biotechnological tools for agriculture and revegetation practices in the region. Here we present a pioneering program to isolate, identify, and apply AMF isolated from rhizosphere soils of agricultural and natural habitats, namely date palm plantations and five native desert plants, respectively in the Southern Arabian Peninsula. We established taxonomically unique AMF species as single-spore cultures as part of an expanding collection of AMF strains adapted to arid ecosystems. Preliminary experiments were conducted to evaluate the abilities of these AMF strains to promote seedling growth of a main crop Phoenix dactylifera L. and a common plant Prosopis cineraria L. (Druce) in the Arabian Peninsula. The results showed that inoculation with certain AMF species enhanced the growth of both plants, highlighting the potential of these fungi as part of sustainable land use practices in this region.


Sign in / Sign up

Export Citation Format

Share Document