A Cauchy integral formula for a class of elliptic systems of partial differential equations of first order in the space

1982 ◽  
Vol 108 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Bernd Goldschmidt
Author(s):  
Vitalii S. Shpakivskyi ◽  
Tetyana S. Kuzmenko

We consider a class of so-called quaternionic G-monogenic mappings associatedwith m-dimensional (m 2 f2; 3; 4g) partial differential equations and propose a description of allmappings from this class by using four analytic functions of complex variable. For G-monogenicmappings we generalize some analogues of classical integral theorems of the holomorphic functiontheory of the complex variable (the surface and the curvilinear Cauchy integral theorems,the Cauchy integral formula, the Morera theorem), and Taylor’s and Laurent’s expansions.Moreover, we investigated the relation between G-monogenic and H-monogenic (differentiablein the sense of Hausdorff) quaternionic mappings.


Author(s):  
Mohammad A. Kazemi

AbstractIn this paper a class of optimal control problems with distributed parameters is considered. The governing equations are nonlinear first order partial differential equations that arise in the study of heterogeneous reactors and control of chemical processes. The main focus of the present paper is the mathematical theory underlying the algorithm. A conditional gradient method is used to devise an algorithm for solving such optimal control problems. A formula for the Fréchet derivative of the objective function is obtained, and its properties are studied. A necessary condition for optimality in terms of the Fréchet derivative is presented, and then it is shown that any accumulation point of the sequence of admissible controls generated by the algorithm satisfies this necessary condition for optimality.


Sign in / Sign up

Export Citation Format

Share Document