scholarly journals Adjusting win statistics for dependent censoring

2020 ◽  
Author(s):  
Gaohong Dong ◽  
Bo Huang ◽  
Duolao Wang ◽  
Johan Verbeeck ◽  
Jiuzhou Wang ◽  
...  
Keyword(s):  
2010 ◽  
Vol 29 (6) ◽  
pp. 694-707 ◽  
Author(s):  
Richard J. Cook ◽  
Jerald F. Lawless ◽  
Ker-Ai Lee

2013 ◽  
Vol 1 (2) ◽  
pp. 235-254 ◽  
Author(s):  
Jordan C. Brooks ◽  
Mark J. van der Laan ◽  
Daniel E. Singer ◽  
Alan S. Go

AbstractCausal effects in right-censored survival data can be formally defined as the difference in the marginal cumulative event probabilities under particular interventions. Conventional estimators, such as the Kaplan-Meier (KM), fail to consistently estimate these marginal parameters under dependent treatment assignment or dependent censoring. Several modern estimators have been developed that reduce bias under both dependent treatment assignment and dependent censoring by incorporating information from baseline and time-dependent covariates. In the present article we describe a recently developed targeted minimum loss-based estimation (TMLE) algorithm for general longitudinal data structures and present in detail its application in right-censored survival data with time-dependent covariates. The treatment-specific marginal cumulative event probability is defined via a series of iterated conditional expectations in a time-dependent counting process framework. The TMLE involves an initial estimator of each conditional expectation and sequentially updates these such that the resulting estimator solves the efficient influence curve estimating equation in the nonparametric statistical model. We describe the assumptions required for consistent estimation of statistical parameters and additional assumptions required for consistent estimation of the causal effect parameter. Using simulated right-censored survival data, the mean squared error, bias, and 95% confidence interval coverage probability of the TMLE is compared with those of the conventional KM and the inverse probability of censoring weight estimating equation, conventional maximum likelihood substitution estimator, and the double robustaugmented inverse probability of censoring weighted estimating equation. We conclude the article with estimation of the causal effect of warfarin medical therapy on the probability of “stroke or death” within a 1-year time frame using data from the ATRIA-1 observational cohort of persons with atrial fibrillation. Our results suggest that a fixed policy of warfarin treatment for all patients would result in 2% fewer deaths or strokes within 1-year as compared with a policy of withholding warfarin from all patients.


Biometrika ◽  
2019 ◽  
Author(s):  
S Yang ◽  
K Pieper ◽  
F Cools

Summary Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed for estimating the model parameters in the presence of time-dependent confounding and administrative censoring. However, most existing methods require manually pre-processing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the nonsmoothness of artificial censoring. We propose a class of continuous-time structural failure time models that respects the continuous-time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from a potentially infinite number of estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, which are consistent if the model for the treatment process or the failure time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that resampling methods can be used for inference.


2019 ◽  
Vol 62 (1) ◽  
pp. 136-156 ◽  
Author(s):  
Negera Wakgari Deresa ◽  
Ingrid Van Keilegom

Sign in / Sign up

Export Citation Format

Share Document