scholarly journals An Improvement of the Conditions (A1), (A2), (B1), and (B2) in the Paper "Pointwise Convergence of Double Trigonometric Series" by Chang-Pao Chen and Po-Hsun Hsieh

1993 ◽  
Vol 172 (2) ◽  
pp. 600-601
Author(s):  
F. Moricz
Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3759-3771
Author(s):  
Karanvir Singh ◽  
Kanak Modi

In this paper we study the pointwise convergence and convergence in L1-norm of double trigonometric series whose coefficients form a null sequence of bounded variation of order (p,0),(0,p) and (p,p) with the weight (jk)p-1 for some integer p > 1. The double trigonometric series in this paper represents double cosine series, double sine series and double cosine sine series. Our results extend the results of Young [9], Kolmogorov [4] in the sense of single trigonometric series to double trigonometric series and of M?ricz [6,7] in the sense of higher values of p.


2004 ◽  
Vol 35 (3) ◽  
pp. 267-280 ◽  
Author(s):  
Kulwinder Kaur ◽  
S. S. Bhatia ◽  
Babu Ram

In this paper the following convergence properties are established for the rectangular partial sums of the double trigonometric series, whose coefficients form a null sequence of bounded variation of order $ (p,0) $, $ (0,p) $ and $ (p,p) $, for some $ p\ge 1$: (a) pointwise convergence; (b) uniform convergence; (c) $ L^r $-integrability and $ L^r $-metric convergence for $ 0


Sign in / Sign up

Export Citation Format

Share Document