null sequence
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 19 (1) ◽  
pp. 477-482
Author(s):  
Emanuele Bottazzi ◽  
Mikhail G. Katz

Abstract A refinement of the classic equivalence relation among Cauchy sequences yields a useful infinitesimal-enriched number system. Such an approach can be seen as formalizing Cauchy’s sentiment that a null sequence “becomes” an infinitesimal. We signal a little-noticed construction of a system with infinitesimals in a 1910 publication by Giuseppe Peano, reversing his earlier endorsement of Cantor’s belittling of infinitesimals.



Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3759-3771
Author(s):  
Karanvir Singh ◽  
Kanak Modi

In this paper we study the pointwise convergence and convergence in L1-norm of double trigonometric series whose coefficients form a null sequence of bounded variation of order (p,0),(0,p) and (p,p) with the weight (jk)p-1 for some integer p > 1. The double trigonometric series in this paper represents double cosine series, double sine series and double cosine sine series. Our results extend the results of Young [9], Kolmogorov [4] in the sense of single trigonometric series to double trigonometric series and of M?ricz [6,7] in the sense of higher values of p.



2018 ◽  
Vol 40 (6) ◽  
pp. 1634-1654 ◽  
Author(s):  
ANH NGOC LE

The results of Bergelson, Host and Kra, and Leibman state that a multiple polynomial correlation sequence can be decomposed into a sum of a nilsequence (a sequence defined by evaluating a continuous function along an orbit in a nilsystem) and a null sequence (a sequence that goes to zero in density). We refine their results by proving that the null sequence goes to zero in density along polynomials evaluated at primes and along the Hardy sequence $(\lfloor n^{c}\rfloor )$. In contrast, given a rigid sequence, we construct an example of a correlation whose null sequence does not go to zero in density along that rigid sequence. As a corollary of a lemma in the proof, the formula for the pointwise ergodic average along polynomials of primes in a nilsystem is also obtained.



2018 ◽  
Vol 2020 (18) ◽  
pp. 5506-5533 ◽  
Author(s):  
B M Braga

Abstract In these notes, we study nonlinear embeddings between Banach spaces that are also weakly sequentially continuous. In particular, our main result implies that if a Banach space $X$ coarsely (resp. uniformly) embeds into a Banach space $Y$ by a weakly sequentially continuous map, then every spreading model $(e_n)_n$ of a normalized weakly null sequence in $X$ satisfies $$ \|e_1+\ldots+e_k\|_{\overline{\delta}_Y}\lesssim\|e_1+\ldots+e_k\|_S,$$where $\overline{\delta }_Y$ is the modulus of asymptotic uniform convexity of $Y$. Among other results, we obtain Banach spaces $X$ and $Y$ so that $X$ coarsely (resp. uniformly) embeds into $Y$, but so that $X$ cannot be mapped into $Y$ by a weakly sequentially continuous coarse (resp. uniform) embedding.



Filomat ◽  
2018 ◽  
Vol 32 (16) ◽  
pp. 5645-5663 ◽  
Author(s):  
Veysel Nezir ◽  
Nizami Mustafa

P.K. Lin gave the first example of a non-reflexive Banach space (X,||?||) with the fixed point property (FPP) for nonexpansive mappings and showed this fact for (l1,||?||1) with the equivalent norm ||?|| given by ||x|| = sup k?N 8k/1+8k ?1,n=k |xn|, for all x = (xn)n?N ? l1. We wonder (c0, ||?||1) analogue of P.K. Lin?s work and we give positive answer if functions are affine nonexpansive. In our work, for x = (?k)k ? c0, we define |||x||| := lim p?? sup ?k?N ?k (?1,j=k |?j|p/2j)1/p where ?k ?k 3, k is strictly increasing with ?k > 2, ?k ? N, then we prove that (c0,|||?|||) has the fixed point property for affine |||?|||-nonexpansive self-mappings. Next, we generalize this result and show that if ?(?) is an equivalent norm to the usual norm on c0 such that lim sup n ?(1/n ?n,m=1 xm + x) = lim sup n ?(1/n ?n,m=1 xm) + ?(x) for every weakly null sequence (xn)n and for all x ? c0, then for every ? > 0, c0 with the norm ||?||? = ?(?)+?|||?||| has the FPP for affine ||?||?-nonexpansive self-mappings.







2016 ◽  
Vol 15 (7) ◽  
pp. 6933-6939
Author(s):  
Dr. Ahmad Hamza Al Cheikha

Walsh Sequences and M-Sequences used widely at the forward links of communication channels to mix the information on connecting to and at the backward links of these channels to sift through this information is transmitted to reach the receivers this information in correct form, specially in the pilot channels, the Sync channels, and the Traffic channel. This research is useful to generate new sets of sequences (which are also with the corresponding null sequence additive groups) by compose Walsh Sequences and M-sequences with the bigger lengths and the bigger minimum distance that assists to increase secrecy of these information and increase the possibility of correcting mistakes resulting in the channels of communication.



2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Kuddusi Kayaduman ◽  
Mehmet Şengönül

We have discussed some important problems about the spacesV~σandV~0σof Cesàro sigma convergent and Cesàro null sequence.



Sign in / Sign up

Export Citation Format

Share Document