scholarly journals Hierarchical Identity Based Encryption with Constant Size Ciphertext

Author(s):  
Dan Boneh ◽  
Xavier Boyen ◽  
Eu-Jin Goh
ETRI Journal ◽  
2012 ◽  
Vol 34 (1) ◽  
pp. 142-145 ◽  
Author(s):  
Leyou Zhang ◽  
Qing Wu ◽  
Yupu Hu

2018 ◽  
Vol 62 (8) ◽  
pp. 1087-1091
Author(s):  
Xi-Jun Lin ◽  
Lin Sun ◽  
Haipeng Qu ◽  
He-Qun Xian

AbstractRecently, Zhang et al. proposed a new anonymous hierarchical identity-based encryption (anonymous HIBE) over prime order groups to achieve both constant size private key and constant size ciphertext. Moreover, a double exponent technique was used to provide anonymity. They proved that their scheme is secure and anonymous against chosen plaintext attacks in the standard model. In this paper, we point out that their scheme is insecure.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1453
Author(s):  
Jiwon Lee ◽  
Seunghwa Lee ◽  
Jihye Kim ◽  
Hyunok Oh

Wildcarded identity-based encryption (WIBE) is an encryption system where one can encrypt messages to multiple users by specifying a pattern, which is a set of identity strings or wildcards. It is a useful primitive for practical applications where users are defined with multiple attributes (or affiliations), such as organization networks or IoT firmware updates. However, the ciphertext size in traditional WIBE schemes are linear to the number of wildcards in the pattern; since the ciphertext size determines the payload in network systems, it degrades the practicality when deployed in transmission-sensitive systems. In this paper, we represent scalable wildcarded identity-based encryption (SWIBE), which achieves a constant-size ciphertext regardless of the number of wildcards (or depth of patterns). the SWIBE scheme also allows the wildcard usage key derivation as well as encryption: a user with wildcarded pattern can delegate keys for the fixed pattern. Compared to the existing WIBE schemes, the SWIBE scheme is the first approach to yield constant-size ciphertext. Moreover, SWIBE also improves encryption time and decryption time while maintaining a key size of 2L, comparable to the key size of L in WIBE schemes (where L is a depth of the pattern). The experimental results show that the decryption time is 3 to 10 times faster than the existing WIBE schemes, and 650 times faster than the attribute-based encryption with constant-size ciphertext. For the security, we first propose the selective-CPA-secure SWIBE scheme in a prime order bilinear group and extend it to be selective-CCA-secure. Then we also propose a fully-secure SWIBE scheme which can overcome the selective security.


2011 ◽  
Vol 12 (10) ◽  
pp. 819-827
Author(s):  
Yang Yang ◽  
Yu-pu Hu ◽  
Le-you Zhang ◽  
Chun-hui Sun

Sign in / Sign up

Export Citation Format

Share Document