Protein Structure Prediction by Protein Threading

Author(s):  
Ying Xu ◽  
Zhijie Liu ◽  
Liming Cai ◽  
Dong Xu
Author(s):  
Tatsuya Akutsu

This chapter provides an overview of computational problems and techniques for protein threading. Protein threading is one of the most powerful approaches to protein structure prediction, where protein structure prediction is to infer three-dimensional (3-D) protein structure for a given protein sequence. Protein threading can be modeled as an optimization problem. Optimal solutions can be obtained in polynomial time using simple dynamic programming algorithms if profile type score functions are employed. However, this problem is computationally hard (NP-hard) if score functions include pairwise interaction preferences between amino acid residues. Therefore, various algorithms have been developed for finding optimal or near-optimal solutions. This chapter explains the ideas employed in these algorithms. This chapter also gives brief explanations of related problems: protein threading with constraints, comparison of RNA secondary structures and protein structure alignment.


Author(s):  
Tatsuya Akutsu

This chapter provides an overview of computational problems and techniques for protein threading. Protein threading is one of the most powerful approaches to protein structure prediction, where protein structure prediction is to infer three-dimensional (3-D) protein structure for a given protein sequence. Protein threading can be modeled as an optimization problem. Optimal solutions can be obtained in polynomial time using simple dynamic programming algorithms if profile type score functions are employed. However, this problem is computationally hard (NP-hard) if score functions include pairwise interaction preferences between amino acid residues. Therefore, various algorithms have been developed for finding optimal or near-optimal solutions. This chapter explains the ideas employed in these algorithms. This chapter also gives brief explanations of related problems: protein threading with constraints, comparison of RNA secondary structures and protein structure alignment.


2008 ◽  
pp. 103-118
Author(s):  
Tatsuya Akutsu

This chapter provides an overview of computational problems and techniques for protein threading. Protein threading is one of the most powerful approaches to protein structure prediction, where protein structure prediction is to infer three-dimensional (3-D) protein structure for a given protein sequence. Protein threading can be modeled as an optimization problem. Optimal solutions can be obtained in polynomial time using simple dynamic programming algorithms if profile type score functions are employed. However, this problem is computationally hard (NP-hard) if score functions include pairwise interaction preferences between amino acid residues. Therefore, various algorithms have been developed for finding optimal or near-optimal solutions. This chapter explains the ideas employed in these algorithms. This chapter also gives brief explanations of related problems: protein threading with constraints, comparison of RNA secondary structures and protein structure alignment.


2020 ◽  
Author(s):  
Lupeng Kong ◽  
Fusong Ju ◽  
Wei-Mou Zheng ◽  
Shiwei Sun ◽  
Jinbo Xu ◽  
...  

AbstractTemplate-based modeling (TBM), including homology modeling and protein threading, is one of the most reliable techniques for protein structure prediction. It predicts protein structure by building an alignment between the query sequence under prediction and the templates with solved structures. However, it is still very challenging to build the optimal sequence-template alignment, especially when only distantly-related templates are available.Here we report a novel deep learning approach ProALIGN that can predict much more accurate sequence-template alignment. Like protein sequences consisting of sequence motifs, protein alignments are also composed of frequently-occurring alignment motifs with characteristic patterns. Alignment motifs are context-specific as their characteristic patterns are tightly related to sequence contexts of the aligned regions. Inspired by this observation, we represent a protein alignment as a binary matrix (in which 1 denotes an aligned residue pair) and then use a deep convolutional neural network to predict the optimal alignment from the query protein and its template. The trained neural network implicitly but effectively encodes an alignment scoring function, which reduces inaccuracies in the handcrafted scoring functions widely used by the current threading approaches. For a query protein and a template, we apply the neural network to directly infer likelihoods of all possible residue pairs in their entirety, which could effectively consider the correlations among multiple residues. We further construct the alignment with maximum likelihood, and finally build structure model according to the alignment.Tested on three independent datasets with in total 6,688 protein alignment targets and 80 CASP13 TBM targets, our method achieved much better alignments and 3D structure models than the existing methods including HHpred, CNFpred, CEthreader and DeepThreader. These results clearly demonstrate the effectiveness of exploiting the context-specific alignment motifs by deep learning for protein threading.


1970 ◽  
Vol 19 (2) ◽  
pp. 217-226
Author(s):  
S. M. Minhaz Ud-Dean ◽  
Mahdi Muhammad Moosa

Protein structure prediction and evaluation is one of the major fields of computational biology. Estimation of dihedral angle can provide information about the acceptability of both theoretically predicted and experimentally determined structures. Here we report on the sequence specific dihedral angle distribution of high resolution protein structures available in PDB and have developed Sasichandran, a tool for sequence specific dihedral angle prediction and structure evaluation. This tool will allow evaluation of a protein structure in pdb format from the sequence specific distribution of Ramachandran angles. Additionally, it will allow retrieval of the most probable Ramachandran angles for a given sequence along with the sequence specific data. Key words: Torsion angle, φ-ψ distribution, sequence specific ramachandran plot, Ramasekharan, protein structure appraisal D.O.I. 10.3329/ptcb.v19i2.5439 Plant Tissue Cult. & Biotech. 19(2): 217-226, 2009 (December)


2014 ◽  
Vol 3 (5) ◽  
Author(s):  
S. Reiisi ◽  
M. Hashemzade-chaleshtori ◽  
S. Reisi ◽  
H. Shahi ◽  
S. Parchami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document