Intelligent Information Technologies
Latest Publications


TOTAL DOCUMENTS

139
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By IGI Global

9781599049410, 9781599049427

Author(s):  
Tomasz Muldner ◽  
Elhadi Shakshuki

This article presents a novel approach for explaining algorithms that aims to overcome various pedagogical limitations of the current visualization systems. The main idea is that at any given time, a learner is able to focus on a single problem. This problem can be explained, studied, understood, and tested, before the learner moves on to study another problem. Toward this end, a visualization system that explains algorithms at various levels of abstraction has been designed and implemented. In this system, each abstraction is focused on a single operation from the algorithm using various media, including text and an associated visualization. The explanations are designed to help the user to understand basic properties of the operation represented by this abstraction, for example its invariants. The explanation system allows the user to traverse the hierarchy graph, using either a top-down (from primitive operations to general operations) approach or a bottom-up approach. Since the system is implemented using a client-server architecture, it can be used both in the classroom setting and through distance education.


Author(s):  
Mark Neal ◽  
Jon Timmis

The field of biologically inspired computing has generated many novel, interesting and useful computational systems. None of these systems alone is capable of approaching the level of behaviour for which the artificial intelligence and robotics communities strive. We suggest that it is now time to move on to integrating a number of these approaches in a biologically justifiable way. To this end we present a conceptual framework that integrates artificial neural networks, artificial immune systems and a novel artificial endocrine system. The natural counterparts of these three components are usually assumed to be the principal actors in maintaining homeostasis within biological systems. This chapter proposes a system that promises to capitalise on the self-organising properties of these artificial systems to yield artificially homeostatic systems. The components develop in a common environment and interact in ways that draw heavily on their biological counterparts for inspiration. A case study is presented, in which aspects of the nervous and endocrine systems are exploited to create a simple robot controller. Mechanisms for the moderation of system growth using an artificial immune system are also presented.


Author(s):  
Russell Gluck ◽  
John Fulcher

The chapter commences with an overview of automatic speech recognition (ASR), which covers not only the de facto standard approach of hidden Markov models (HMMs), but also the tried-and-proven techniques of dynamic time warping and artificial neural networks (ANNs). The coverage then switches to Gluck’s (2004) draw-talk-write (DTW) process, developed over the past two decades to assist non-text literate people become gradually literate over time through telling and/or drawing their own stories. DTW has proved especially effective with “illiterate” people from strong oral, storytelling traditions. The chapter concludes by relating attempts to date in automating the DTW process using ANN-based pattern recognition techniques on an Apple Macintosh G4™ platform.


Author(s):  
Rezaul Begg

Now-a-days, researchers are increasingly looking into new and innovative techniques with the help of information technology to overcome the rapid surge in health care costs facing the community. Research undertaken in the past has shown that artificial intelligence (AI) tools and techniques can aid in the diagnosis of disease states and assessment of treatment outcomes. This has been demonstrated in a number of areas, including: help with medical decision support system, classification of heart disease from electrocardiogram (ECG) waveforms, identification of epileptic seizure from electroencephalogram (EEG) signals, ophthalmology to detect glaucoma disease, abnormality in movement pattern (gait) recognition for rehabilitation and potential falls risk minimization, assisting functional electrical stimulation (FES) control in rehabilitation setting of spinal cord injured patients, and clustering of medical images (Begg et al., 2003; Garrett et al., 2003; Masulli et al., 1998; Papadourokis et al., 1998; Silva & Silva, 1998).


Author(s):  
Z.. Ismail ◽  
N. H. Ramli ◽  
Z.. Ibrahim ◽  
T. A. Majid ◽  
G. Sundaraj ◽  
...  

In this chapter, a study on the effects of transforming wind speed data, from a time series domain into a frequency domain via Fast Fourier Transform (FFT), is presented. The wind data is first transformed into a stationary pattern from a non-stationary pattern of time series data using statistical software. This set of time series is then transformed using FFT for the main purpose of the chapter. The analysis is done through MATLAB software, which provides a very useful function in FFT algorithm. Parameters of engineering significance such as hidden periodicities, frequency components, absolute magnitude and phase of the transformed data, power spectral density and cross spectral density can be obtained. Results obtained using data from case studies involving thirty-one weather stations in Malaysia show great potential for application in verifying the current criteria used for design practices.


Author(s):  
Gurdip Singh ◽  
Sanjoy Das ◽  
Shekhar V. Gosavi ◽  
Sandeep Pujar

This chapter introduces ant colony optimization as a method for computing minimum Steiner trees in graphs. Tree computation is achieved when multiple ants, starting out from different nodes in the graph, move towards one another and ultimately merge into a single entity. A distributed version of the proposed algorithm is also described, which is applied to the specific problem of data-centric routing in wireless sensor networks. This research illustrates how tree based graph theoretic computations can be accomplished by means of purely local ant interaction. The authors hope that this work will demonstrate how innovative ways to carry out ant interactions can be used to design effective ant colony algorithms for complex optimization problems.


Author(s):  
Fahim Akhter ◽  
Zakaria Maamar ◽  
Dave Hobbs

The purpose of this article is to present an application of fuzzy logic to human reasoning about electronic commerce (e-commerce) transactions. This article uncovers some of the hidden relationships between critical factors such as security, familiarity, design, and competitiveness. We analyze the effect of these factors on human decision process and how they affect the Business-to-Consumer (B2C) outcome when they are used collectively. This research provides a toolset for B2C vendors to access and evaluate a user’s transaction decision process and also an assisted reasoning tool for the online user.


Author(s):  
Göknur Kaplan Akilli

Computer games and simulations are considered powerful tools for learning with an untapped potential for formal educational use. However, the lack of available well-designed research studies about their integration into teaching and learning leaves unanswered questions, despite their more than thirty years’ existence in the instructional design movement. Beginning with these issues, this chapter aims to shed light on the definition of games and simulations, their educational use, and some of their effects on learning. Criticisms and new trends in the field of instructional design/development in relation to educational use of games and simulations are briefly reviewed. The chapter intends to provide a brief theoretical framework and a fresh starting point for practitioners in the field who are interested in educational use of games and simulations and their integration into learning environments.


Author(s):  
Bill Ag. Drougas

Virtual reality is today an excellent tool for a full simulated experience in a modern environment where any researcher or any individual scientist may work with vital experimental environments or use parameters that sometimes does not really exist. It is already a vital step for the future of science and for the modern experiment. Ergo physiology today has many applications for research. We can find new unknown parameters for the human body searching biokinetics and ergo physiology, and it is time to use modern technologies and applications. The vital issues discussed in this chapter may offer many applications for human kinetics and movement and may also discuss biokinetics research using the physical laws and parameters in various biokinetics and physiology fields.


Author(s):  
Mikhail Prokopenko ◽  
Geoff Poulton ◽  
Don Price ◽  
Peter Wang ◽  
Philip Valencia ◽  
...  

An approach to the structural health management (SHM) of future aerospace vehicles is presented. Such systems will need to operate robustly and intelligently in very adverse environments, and be capable of self-monitoring (and ultimately, self-repair). Networks of embedded sensors, active elements, and intelligence have been selected to form a prototypical “smart skin” for the aerospace structure, and a methodology based on multi-agent networks developed for the system to implement aspects of SHM by processes of self-organisation. Problems are broken down with the aid of a “response matrix” into one of three different scenarios: critical, sub-critical, and minor damage. From these scenarios, three components are selected, these being: (a) the formation of “impact boundaries” around damage sites, (b) self-assembling “impact networks”, and (c) shape replication. A genetic algorithm exploiting phase transitions in systems dynamics has been developed to evolve localised algorithms for impact boundary formation, addressing component (a). An ant colony optimisation (ACO) algorithm, extended by way of an adaptive dead reckoning scheme (ADRS) and which incorporates a “pause” heuristic, has been developed to address (b). Both impact boundary formation and ACO-ADRS algorithms have been successfully implemented on a “concept demonstrator”, while shape replication algorithms addressing component (c) have been successfully simulated.


Sign in / Sign up

Export Citation Format

Share Document