Lorentz Lattice Gases and Many-Dimensional Turing Machines

2002 ◽  
pp. 443-467 ◽  
Author(s):  
Leonid A. Bunimovich ◽  
Milena A. Khlabystova
1996 ◽  
Vol 06 (06) ◽  
pp. 1127-1135 ◽  
Author(s):  
LEONID A. BUNIMOVICH

We study the class of cellular automata that generalizes the Lorentz lattice gases in statistical mechanics, the models of industrious ants in the theory of an artificial life and the so-called Tur-mites (many-dimensional Turing machines). We prove that on the square lattice ℤd, d = 2, the existence of a bounded orbit of a particle (ant, machine) determines all nondegenerate local scattering rules (states of a machine). For higher dimensional (d ≥ 3) cubic lattices we show that under some natural conditions all possible bounded orbits (vortices) can live only in some “vortex sheets” that have a dimension strictly less than d.


1988 ◽  
Vol 51 (5-6) ◽  
pp. 981-990 ◽  
Author(s):  
M. H. Ernst ◽  
P. M. Binder

1995 ◽  
Vol 219 (1-2) ◽  
pp. 56-87 ◽  
Author(s):  
E.G.D. Cohen ◽  
F. Wang

1997 ◽  
Vol 56 (5) ◽  
pp. 5106-5122 ◽  
Author(s):  
C. Appert ◽  
M. H. Ernst

1998 ◽  
Vol 31 (43) ◽  
pp. L723-L729 ◽  
Author(s):  
M J Martins ◽  
B Nienhuis

1991 ◽  
Vol 62 (5-6) ◽  
pp. 1153-1171 ◽  
Author(s):  
X. P. Kong ◽  
E. G. D. Cohen

Sign in / Sign up

Export Citation Format

Share Document