Neural Population Models of the Alpha Rhythm

2018 ◽  
Author(s):  
Agus Hartoyo ◽  
Peter J. Cadusch ◽  
David T. J. Liley ◽  
Damien G. Hicks

AbstractElectroencephalography (EEG) provides a non-invasive measure of brain electrical activity. Neural population models, where large numbers of interacting neurons are considered collectively as a macroscopic system, have long been used to understand features in EEG signals. By tuning dozens of input parameters describing the excitatory and inhibitory neuron populations, these models can reproduce prominent features of the EEG such as the alpha-rhythm. However, the inverse problem, of directly estimating the parameters from fits to EEG data, remains unsolved. Solving this multi-parameter non-linear fitting problem will potentially provide a real-time method for characterizing average neuronal properties in human subjects. Here we perform unbiased fits of a 22-parameter neural population model to EEG data from 82 individuals, using both particle swarm optimization and Markov chain Monte Carlo sampling. We estimate how much is learned about individual parameters by computing Kullback-Leibler divergences between posterior and prior distributions for each parameter. Results indicate that only a single parameter, that determining the dynamics of inhibition, is directly identifiable, while other parameters have large, though correlated, uncertainties. We show that the eigenvalues of the Fisher information matrix are roughly uniformly spaced over a log scale, indicating that the model is sloppy, like many of the regulatory network models in systems biology. These eigenvalues indicate that the system can be modeled with a low effective dimensionality, with inhibition being prominent in driving system behavior.Author summaryElectroencephalography (EEG), where electrodes are used to measure electric potential on the outside of the scalp, provides a simple, non-invasive way to study brain activity. Physiological interpretation of features in EEG signals has often involved use of collective models of neural populations. These neural population models have dozens of input parameters to describe the properties of inhibitory and excitatory neurons. Being able to estimate these parameters by direct fits to EEG data holds the promise of providing a real-time non-invasive method of inferring neuronal properties in different individuals. However, it has long been impossible to fit these nonlinear, multi-parameter models effectively. Here we describe fits of a 22-parameter neural population model to EEG spectra from 82 different subjects, all exhibiting alpha-oscillations. We show how only one parameter, that describing inhibitory dynamics, is constrained by the data, although all parameters are correlated. These results indicate that inhibition plays a central role in the generation and modulation of the alpha-rhythm in humans.


Author(s):  
D. Alistair Steyn-Ross ◽  
Moira Steyn-Ross ◽  
Jamie Sleigh

Author(s):  
Moira Steyn-Ross ◽  
D. Alistair Steyn-Ross ◽  
Jamie Sleigh

2021 ◽  
Author(s):  
Víctor Manuel Hidalgo ◽  
Javier Díaz ◽  
Jorge Mpodozis ◽  
Juan-Carlos Letelier

The origin of the human alpha rhythm has been a matter of debate since Lord Adrian attributed it to synchronous neural populations in the occipital cortex. While some authors have pointed out the Gaussian characteristics of the alpha rhythm, their results have been repeatedly disregarded in favor of Adrian′s interpretation; even though the first EEG Gaussianity reports can be traced back to the origins of EEG. Here we revisit this problem using the envelope analysis — a method that relies on the fact that the coefficient of variation of the envelope (CVE) for continuous-time zero-mean Gaussian white noise (as well as for any filteredsub-band) is equal to √(4−π)/π≈0.523, thus making the CVE a fingerprint for Gaussianity. As a consequence, any significant deviation from Gaussianity is linked to synchronous neural dynamics. Low-CVE signals come from phase-locking dynamics, while mid-CVE signals constitute Gaussian noise. High-CVE signals have been linked to unsteady dynamics in populations of nonlinear oscillators. We analyzed occipital EEG and iEEG data from massive public databases and the order parameter of a population of weakly coupled oscillators using the envelope analysis. Our results showed that the human alpha rhythm can be characterized as a rhythmic, Gaussian, or pulsating signal due to intra- and inter-subject variability. Furthermore, Fourier analysis showed that the canonical spectral peak at≈10[Hz] is present in all three CVE classes, thus demonstrating that this same peak can be produced by rhythms, Gaussian noise, and pulsating ripples. Alpha-like signals obtained from a population of non-linear oscillators showed a different CVE depending only on the coupling constant, suggesting that the same neural population can produce the amplitude modulation patterns observed in experimental data. iEEG data, however, was found to be mostly Gaussian, specially the signals recorded from the calcarine cortex. These results suggest that a new interpretation for EEG event-related synchronization/desynchronization (ERS/ERD) may be needed. Envelope analysis constitutes a novel complement to traditional Fourier-based methods for neural signal analysis relating amplitude modulations (CVE) to signal energy.


Sign in / Sign up

Export Citation Format

Share Document