Impacts of Membrane Computing on Theoretical Computer Science (Extended Abstract)

Author(s):  
Erzsébet Csuhaj-Varjú
Author(s):  
Giancarlo Mauri ◽  
Gheorghe Păun ◽  
Agustín Riscos-Núñez

<p>The present volume contains a selection of papers resulting from the Seventh Brainstorming Week on Membrane Computing (BWMC7), held in Sevilla, from February 2 to February 6, 2009. The meeting was organized by the Research Group on Natural Computing (RGNC) from Department of Computer Science and Artificial Intelligence of Sevilla University. The previous editions of this series of meetings were organized in Tarragona (2003), and Sevilla (2004 – 2008). After the first BWMC, a special issue of Natural Computing – volume 2, number 3, 2003, and a special issue of New Generation Computing – volume 22, number 4, 2004, were published; papers from the second BWMC have appeared in a special issue of Journal of Universal Computer Science – volume 10, number 5, 2004, as well as in a special issue of Soft Computing – volume 9, number 5, 2005; a selection of papers written during the third BWMC has appeared in a special issue of International Journal of Foundations of Computer Science – volume 17, number 1, 2006); after the fourth BWMC a special issue of Theoretical Computer Science was edited – volume 372, numbers 2-3, 2007; after the fifth edition, a special issue of International Journal of Unconventional Computing was edited – volume 5, number 5, 2009; finally, a selection of papers elaborated during the sixth BWMC has appeared in a special issue of Fundamenta Informaticae</p>


Author(s):  
Gemma Bel-Enguix ◽  
M. Dolores Jiménez-López

The paper provides an overview of what could be a new biological-inspired linguistics. The authors discuss some reasons for attempting a more natural description of natural language, lying on new theories of molecular biology and their formalization within the area of theoretical computer science. The authors especially explore three bio-inspired models of computation –DNA computing, membrane computing and networks of evolutionary processors (NEPs) – and their possibilities for achieving a simpler, more natural, and mathematically consistent theoretical linguistics.


2014 ◽  
pp. 1422-1437
Author(s):  
Gemma Bel-Enguix ◽  
M. Dolores Jiménez-López

The article provides an overview of what could be a new biological-inspired linguistics. The authors discuss some reasons for attempting a more natural description of natural language, lying on new theories of molecular biology and their formalization within the area of theoretical computer science. The authors especially explore three bio-inspired models of computation –DNA computing, membrane computing and networks of evolutionary processors (NEPs) – and their possibilities for achieving a simpler, more natural, and mathematically consistent theoretical linguistics.


Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


Sign in / Sign up

Export Citation Format

Share Document