scholarly journals Bounding Mean First Passage Times in Population Continuous-Time Markov Chains

Author(s):  
Michael Backenköhler ◽  
Luca Bortolussi ◽  
Verena Wolf

2013 ◽  
Vol 131 (1) ◽  
pp. 197-212 ◽  
Author(s):  
Romain Bourget ◽  
Loïc Chaumont ◽  
Natalia Sapoukhina


2007 ◽  
Vol 24 (06) ◽  
pp. 813-829 ◽  
Author(s):  
JEFFREY J. HUNTER

The derivation of mean first passage times in Markov chains involves the solution of a family of linear equations. By exploring the solution of a related set of equations, using suitable generalized inverses of the Markovian kernel I - P, where P is the transition matrix of a finite irreducible Markov chain, we are able to derive elegant new results for finding the mean first passage times. As a by-product we derive the stationary distribution of the Markov chain without the necessity of any further computational procedures. Standard techniques in the literature, using for example Kemeny and Snell's fundamental matrix Z, require the initial derivation of the stationary distribution followed by the computation of Z, the inverse of I - P + eπT where eT = (1, 1, …, 1) and πT is the stationary probability vector. The procedures of this paper involve only the derivation of the inverse of a matrix of simple structure, based upon known characteristics of the Markov chain together with simple elementary vectors. No prior computations are required. Various possible families of matrices are explored leading to different related procedures.





1985 ◽  
Vol 22 (4) ◽  
pp. 939-945 ◽  
Author(s):  
David D. Yao

We consider the first-passage times of continuous-time Markov chains. Based on the approach of generalized inverse, moments of all orders are derived and expressed in simple, explicit forms in terms of the ‘fundamental matrix'. The formulas are new and are also efficient for computation.



1985 ◽  
Vol 22 (04) ◽  
pp. 939-945
Author(s):  
David D. Yao

We consider the first-passage times of continuous-time Markov chains. Based on the approach of generalized inverse, moments of all orders are derived and expressed in simple, explicit forms in terms of the ‘fundamental matrix'. The formulas are new and are also efficient for computation.



1989 ◽  
Vol 3 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Joseph Abate ◽  
Ward Whitt

The distribution of upward first passage times in skip-free Markov chains can be expressed solely in terms of the eigenvalues in the spectral representation, without performing a separate calculation to determine the eigenvectors. We provide insight into this result and skip-free Markov chains more generally by showing that part of the spectral theory developed for birth-and-death processes extends to skip-free chains. We show that the eigenvalues and eigenvectors of skip-free chains can be characterized in terms of recursively defined polynomials. Moreover, the Laplace transform of the upward first passage time from 0 to n is the reciprocal of the nth polynomial. This simple relationship holds because the Laplace transforms of the first passage times satisfy the same recursion as the polynomials except for a normalization.



Sign in / Sign up

Export Citation Format

Share Document