Hardware Logic Library and High-Level Logic Synthesizer Combining LOTOS and a Functional Programming Language

Author(s):  
Katsumi Wasaki
1995 ◽  
Vol 5 (1) ◽  
pp. 81-110 ◽  
Author(s):  
Peter Achten ◽  
Rinus Plasmeijer

AbstractFunctional programming languages have banned assignment because of its undesirable properties. The reward of this rigorous decision is that functional programming languages are side-effect free. There is another side to the coin: because assignment plays a crucial role in Input/Output (I/O), functional languages have a hard time dealing with I/O. Functional programming languages have therefore often been stigmatised as inferior to imperative programming languages because they cannot deal with I/O very well. In this paper, we show that I/O can be incorporated in a functional programming language without loss of any of the generally accepted advantages of functional programming languages. This discussion is supported by an extensive account of the I/O system offered by the lazy, purely functional programming language Clean. Two aspects that are paramount in its I/O system make the approach novel with respect to other approaches. These aspects are the technique of explicit multiple environment passing, and the Event I/O framework to program Graphical User I/O in a highly structured and high-level way. Clean file I/O is as powerful and flexible as it is in common imperative languages (one can read, write, and seek directly in a file). Clean Event I/O provides programmers with a high-level framework to specify complex Graphical User I/O. It has been used to write applications such as a window-based text editor, an object based drawing program, a relational database, and a spreadsheet program. These graphical interactive programs are completely machine independent, but still obey the look-and-feel of the concrete window environment being used. The specifications are completely functional and make extensive use of uniqueness typing, higher-order functions, and algebraic data types. Efficient implementations are present on the Macintosh, Sun (X Windows under Open Look) and PC (OS/2).


2007 ◽  
Vol 17 (1) ◽  
pp. 131-143 ◽  
Author(s):  
DAVID WAKELING

AbstractThe functional programming community has shown some interest in spreadsheets, but surprisingly no one seems to have considered making a standard spreadsheet, such as Excel, work with a standard functional programming language, such as Haskell. In this paper, we show one way that this can be done. Our hope is that by doing so, we might get spreadsheet programmers to give functional programming a try.


Author(s):  
Juan Guti´errez-C´ardenas ◽  
Hernan Quintana-Cruz ◽  
Diego Mego-Fernandez ◽  
Serguei Diaz-Baskakov

2013 ◽  
Vol 23 (5) ◽  
pp. 552-593 ◽  
Author(s):  
EDWIN BRADY

AbstractMany components of a dependently typed programming language are by now well understood, for example, the underlying type theory, type checking, unification and evaluation. How to combine these components into a realistic and usable high-level language is, however, folklore, discovered anew by successive language implementors. In this paper, I describe the implementation ofIdris, a new dependently typed functional programming language.Idrisis intended to be ageneral-purposeprogramming language and as such provides high-level concepts such as implicit syntax, type classes anddonotation. I describe the high-level language and the underlying type theory, and present a tactic-based method forelaboratingconcrete high-level syntax with implicit arguments and type classes into a fully explicit type theory. Furthermore, I show how this method facilitates the implementation of new high-level language constructs.


1991 ◽  
Vol 1 (1) ◽  
pp. 3-20 ◽  
Author(s):  
F. Warren Burton

AbstractA parallel program may be indeterminate so that it can adapt its behavior to the number of processors available.Indeterminate programs are hard to write, understand, modify or verify. They are impossible to debug, since they may not behave the same from one run to the next.We propose a new construct, a polymorphic abstract data type called an improving value, with operations that have indeterminate behavior but simple determinate semantics. These operations allow the type of indeterminate behavior required by many parallel algorithms.We define improving values in the context of a functional programming language, but the technique can be used in procedural programs as well.


Sign in / Sign up

Export Citation Format

Share Document