scholarly journals Poisson Smooth Structures on Stratified Symplectic Spaces

Author(s):  
Petr Somberg ◽  
Hông Vân Lê ◽  
Jiři Vanžura
2019 ◽  
Vol 12 (05) ◽  
pp. 1950069
Author(s):  
Mahdieh Hakimi Poroch

In this paper, we propose the Sphere-packing bound, Singleton bound and Gilbert–Varshamov bound on the subspace codes [Formula: see text] based on totally isotropic subspaces in symplectic space [Formula: see text] and on the subspace codes [Formula: see text] based on totally isotropic subspace in extended symplectic space [Formula: see text].


2010 ◽  
Vol 17 (10) ◽  
pp. 1413-1423 ◽  
Author(s):  
Zengti Li ◽  
Suogang Gao ◽  
Hongjie Du ◽  
Feng Zou ◽  
Weili Wu

1969 ◽  
Vol 90 (1) ◽  
pp. 187 ◽  
Author(s):  
Reinhard E. Schultz
Keyword(s):  

Author(s):  
Juan-Pablo Ortega ◽  
Tudor S. Ratiu
Keyword(s):  

The disc embedding theorem provides a detailed proof of the eponymous theorem in 4-manifold topology. The theorem, due to Michael Freedman, underpins virtually all of our understanding of 4-manifolds in the topological category. Most famously, this includes the 4-dimensional topological Poincaré conjecture. Combined with the concurrent work of Simon Donaldson, the theorem reveals a remarkable disparity between the topological and smooth categories for 4-manifolds. A thorough exposition of Freedman’s proof of the disc embedding theorem is given, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided. Techniques from decomposition space theory are used to show that an object produced by an infinite, iterative process, which we call a skyscraper, is homeomorphic to a thickened disc, relative to its boundary. A stand-alone interlude explains the disc embedding theorem’s key role in smoothing theory, the existence of exotic smooth structures on Euclidean space, and all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. The book is written to be accessible to graduate students working on 4-manifolds, as well as researchers in related areas. It contains over a hundred professionally rendered figures.


2021 ◽  
pp. 295-330
Author(s):  
Mark Powell ◽  
Arunima Ray

The development of topological 4-manifold theory is described in the form of a flowchart showing the interdependence among many key statements in the theory. In particular, the flowchart demonstrates how the theory crucially relies on the constructions in this book, what goes into the work of Quinn on smoothing, normal bundles, and transversality, and what is needed to deduce the famous consequences, such as the classification of closed, simply connected, topological 4-manifolds, the category preserving Poincaré conjecture, and the existence of exotic smooth structures on 4-dimensional Euclidean space. Precise statements of the results, brief indications of some proofs, and extensive references are provided.


Sign in / Sign up

Export Citation Format

Share Document