The Complex Structure on Teichmüller Space

Author(s):  
Anthony J. Tromba
Author(s):  
Vladimir Fock ◽  
Alexander Thomas

Abstract We introduce and analyze a new geometric structure on topological surfaces generalizing the complex structure. To define this so-called higher complex structure, we use the punctual Hilbert scheme of the plane. The moduli space of higher complex structures is defined and is shown to be a generalization of the classical Teichmüller space. We give arguments for the conjectural isomorphism between the moduli space of higher complex structures and Hitchin’s component.


2006 ◽  
Vol 08 (04) ◽  
pp. 481-534 ◽  
Author(s):  
DAVID RADNELL ◽  
ERIC SCHIPPERS

One of the basic geometric objects in conformal field theory (CFT) is the moduli space of Riemann surfaces whose n boundaries are "rigged" with analytic parametrizations. The fundamental operation is the sewing of such surfaces using the parametrizations to identify points. An alternative model is the moduli space of n-punctured Riemann surfaces together with local biholomorphic coordinates at the punctures. We refer to both of these moduli spaces as the "rigged Riemann moduli space".By generalizing to quasisymmetric boundary parametrizations, and defining rigged Teichmüller spaces in both the border and puncture pictures, we prove the following results: (1) The Teichmüller space of a genus-g surface bordered by n closed curves covers the rigged Riemann and rigged Teichmüller moduli spaces of surfaces of the same type, and induces complex manifold structures on them; (2) With this complex structure, the sewing operation is holomorphic; (3) The border and puncture pictures of the rigged moduli and rigged Teichmüller spaces are biholomorphically equivalent.These results are necessary in rigorously defining CFT (in the sense of G. Segal), as well as for the construction of CFT from vertex operator algebras.


Sign in / Sign up

Export Citation Format

Share Document