Artificial Bee Colony Algorithm Based on Local Information Sharing in Dynamic Environment

Author(s):  
Ryo Takano ◽  
Tomohiro Harada ◽  
Hiroyuki Sato ◽  
Keiki Takadama
2016 ◽  
Vol 2016 ◽  
pp. 1-18
Author(s):  
Linguo Li ◽  
Lijuan Sun ◽  
Jian Guo ◽  
Chong Han ◽  
Shujing Li

Thresholding segmentation based on fuzzy entropy and intelligent optimization is one of the most commonly used and direct methods. This paper takes fuzzy Kapur’s entropy as the best optimal objective function, with modified quick artificial bee colony algorithm (MQABC) as the tool, performs fuzzy membership initialization operations through Pseudo Trapezoid-Shaped (PTS) membership function, and finally, according to the image’s spacial location information, conducts local information aggregation by way of median, average, and iterative average so as to achieve the final segmentation. The experimental results show that the proposed FMQABC (fuzzy based modified quick artificial bee colony algorithm) and FMQABCA (fuzzy based modified quick artificial bee colony and aggregation algorithm) can search out the best optimal threshold very effectively, precisely, and speedily and in particular show exciting efficiency in running time. This paper experimentally compares the proposed method with Kapur’s entropy-based Electromagnetism Optimization (EMO) method, standard ABC, and FDE (fuzzy entropy based differential evolution algorithm), respectively, and concludes that MQABCA is far more superior to the rest in terms of segmentation quality, iterations to convergence, and running time.


2014 ◽  
Vol 556-562 ◽  
pp. 3562-3566 ◽  
Author(s):  
Shuo Jiang

In this paper, an improved artificial bee colony algorithm (IABC) for dynamic environment optimization has been proposed. As we compared the IABC with greedy algorithm (GA), Particle swarm optimization (PSO) and original artificial bee colony algorithm (ABC), the result of dynamic function optimization shows that the IABC can obtain satisfactory solutions and good tracing performance for dynamic function in time.


Informatica ◽  
2017 ◽  
Vol 28 (3) ◽  
pp. 415-438 ◽  
Author(s):  
Bekir Afşar ◽  
Doğan Aydin ◽  
Aybars Uğur ◽  
Serdar Korukoğlu

Sign in / Sign up

Export Citation Format

Share Document