particle swarm optimization
Recently Published Documents





Padmanabha Raju Chinda ◽  
Ragaleela Dalapati Rao

Improvement of power system security manages the errand of making healing move against conceivable system overloads in the framework following the events of contingencies. Generation re-dispatching is answer for the evacuation of line overloads. The issue is the minimization of different goals viz. minimization of fuel cost, minimization of line loadings and minimization of overall severity index. Binary particle swarm optimization (BPSO) method was utilized to take care of optimal power flow issue with different targets under system contingencies. The inspiration to introduce BPSO gets from the way that, in rivalry with other meta-heuristics, BPSO has demonstrated to be a champ by and large, putting a technique as a genuine alternative when one needs to take care of a complex optimization problem. The positioning is assessed utilizing fuzzy logic. Simulation Results on IEEE-14 and IEEE-30 bus systems are presented with different objectives.

2022 ◽  
Vol 22 (3) ◽  
pp. 1-17
Chaonan Shen ◽  
Kai Zhang ◽  
Jinshan Tang

COVID-19 has been spread around the world and has caused a huge number of deaths. Early detection of this disease is the most efficient way to prevent its rapid spread. Due to the development of internet technology and edge intelligence, developing an early detection system for COVID-19 in the medical environment of the Internet of Things (IoT) can effectively alleviate the spread of the disease. In this paper, a detection algorithm is developed, which can detect COVID-19 effectively by utilizing the features from Chest X-ray (CXR) images. First, a pre-trained model (ResNet18) is adopted for feature extraction. Then, a discrete social learning particle swarm optimization algorithm (DSLPSO) is proposed for feature selection. By filtering redundant and irrelevant features, the dimensionality of the feature vector is reduced. Finally, the images are classified by a Support Vector Machine (SVM) for COVID-19 detection. Experimental results show that the proposed algorithm can achieve competitive performance with fewer features, which is suitable for edge computing devices with lower computation power.

Suraya Masrom ◽  
Norhayati Baharun ◽  
Nor Faezah Mohamad Razi ◽  
Rahayu Abdul Rahman ◽  

Particle Swarm Optimization is a metaheuristics algorithm widely used for optimization problems. This paper presents the research design and implementation of using Particle Swarm Optimization to automate the features selections in the machine learning models for Airbnb price prediction. Today, Airbnb is changing the business models of the hospitality industry globally. While a bigger impact has been given by the Airbnb community to the local economic development of each country, there has been very little effort that investigates on Airbnb pricing issue with machine learning techniques. Focusing on Airbnb Singapore, the main problem on the dataset is the low correlation of the independent variables to the hospitality price. Choosing the best combination of the independent variables is essential, which can be achieved through features selection optimization. Particle Swarm Optimization is useful to optimize the best variables combination for automating the features selection in machine learning models. By comparing the magnitude of change of the R squared values before and after the use of PSO feature selection, the result showed that the automated features selection has improved the results of all the machine learning algorithms mainly in the linear-based machine learning (Linear Regression, Lasso, Ridge). Keywords—Machine Learning, Automated Features Selection, Particle Swarm Optimization, Airbnb

Sign in / Sign up

Export Citation Format

Share Document