Time Petri Nets with Inhibitor Hyperarcs. Formal Semantics and State Space Computation

Author(s):  
Olivier H. Roux ◽  
Didier Lime
Author(s):  
Naima Jbeli ◽  
Zohra Sbai

Time Petri nets (TPN) are successfully used in the specification and analysis of distributed systems that involve explicit timing constraints. Especially, model checking TPN is a hopeful method for the formal verification of such complex systems. For this, it is promising to lean to the construction of an optimized version of the state space. The well-known methods of state space abstraction are SCG (state class graph) and ZBG (graph based on zones). For ZBG, a symbolic state represents the real evaluations of the clocks of the TPN; it is thus possible to directly check quantitative time properties. However, this method suffers from the state space explosion. To attenuate this problem, the authors propose in this paper to combine the ZBG approach with the partial order reduction technique based on stubborn set, leading thus to the proposal of a new state space abstraction called reduced zone-based graph (RZBG). The authors show via case studies the efficiency of the RZBG which is implemented and integrated within the 〖TPN-TCTL〗_h^∆ model checking in the model checker Romeo.


2006 ◽  
Vol 6 (3) ◽  
pp. 301-320 ◽  
Author(s):  
GUILLAUME GARDEY ◽  
OLIVIER H. ROUX ◽  
OLIVIER F. ROUX

The theory of Petri Nets provides a general framework to specify the behaviors of real-time reactive systems and Time Petri Nets were introduced to take also temporal specifications into account. We present in this paper a forward zone-based algorithm to compute the state space of a bounded Time Petri Net: the method is different and more efficient than the classical State Class Graph. We prove the algorithm to be exact with respect to the reachability problem. Furthermore, we propose a translation of the computed state space into a Timed Automaton, proved to be timed bisimilar to the original Time Petri Net. As the method produce a single Timed Automaton, syntactical clocks reduction methods (DAWS and YOVINE for instance) may be applied to produce an automaton with fewer clocks. Then, our method allows to model-check T-TPN by the use of efficient Timed Automata tools.


2017 ◽  
Vol 50 (1) ◽  
pp. 5843-5848
Author(s):  
F. Basile ◽  
P. Chiacchio ◽  
J. Coppola
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document