scholarly journals Backdoor Sets of Quantified Boolean Formulas

Author(s):  
Marko Samer ◽  
Stefan Szeider
2008 ◽  
Vol 42 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Marko Samer ◽  
Stefan Szeider

2017 ◽  
pp. 151-168 ◽  
Author(s):  
Ralf Wimmer ◽  
Karina Wimmer ◽  
Christoph Scholl ◽  
Bernd Becker

Author(s):  
Olaf Beyersdorff ◽  
Mikoláš Janota ◽  
Florian Lonsing ◽  
Martina Seidl

Solvers for quantified Boolean formulas (QBF) have become powerful tools for tackling hard computational problems from various application domains, even beyond the scope of SAT. This chapter gives a description of the main algorithmic paradigms for QBF solving, including quantified conflict driven clause learning (QCDCL), expansion-based solving, dependency schemes, and QBF preprocessing. Particular emphasis is laid on the connections of these solving approaches to QBF proof systems: Q-Resolution and its variants in the case of QCDCL, expansion QBF resolution calculi for expansion-based solving, and QRAT for preprocessing. The chapter also surveys the relations between the various QBF proof systems and results on their proof complexity, thereby shedding light on the diverse performance characteristics of different solving approaches that are observed in practice.


Author(s):  
Hans Kleine Büning ◽  
Uwe Bubeck

Quantified Boolean formulas (QBF) are a generalization of propositional formulas by allowing universal and existential quantifiers over variables. This enhancement makes QBF a concise and natural modeling language in which problems from many areas, such as planning, scheduling or verification, can often be encoded in a more compact way than with propositional formulas. We introduce in this chapter the syntax and semantics of QBF and present fundamental concepts. This includes normal form transformations and Q-resolution, an extension of the propositional resolution calculus. In addition, Boolean function models are introduced to describe the valuation of formulas and the behavior of the quantifiers. We also discuss the expressive power of QBF and provide an overview of important complexity results. These illustrate that the greater capabilities of QBF lead to more complex problems, which makes it interesting to consider suitable subclasses of QBF. In particular, we give a detailed look at quantified Horn formulas (QHORN) and quantified 2-CNF (Q2-CNF).


Sign in / Sign up

Export Citation Format

Share Document