clause learning
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 26)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 1-21
Author(s):  
Chu-Min Li ◽  
Zhenxing Xu ◽  
Jordi Coll ◽  
Felip Manyà ◽  
Djamal Habet ◽  
...  

The Maximum Satisfiability Problem, or MaxSAT, offers a suitable problem solving formalism for combinatorial optimization problems. Nevertheless, MaxSAT solvers implementing the Branch-and-Bound (BnB) scheme have not succeeded in solving challenging real-world optimization problems. It is widely believed that BnB MaxSAT solvers are only superior on random and some specific crafted instances. At the same time, SAT-based MaxSAT solvers perform particularly well on real-world instances. To overcome this shortcoming of BnB MaxSAT solvers, this paper proposes a new BnB MaxSAT solver called MaxCDCL. The main feature of MaxCDCL is the combination of clause learning of soft conflicts and an efficient bounding procedure. Moreover, the paper reports on an experimental investigation showing that MaxCDCL is competitive when compared with the best performing solvers of the 2020 MaxSAT Evaluation. MaxCDCL performs very well on real-world instances, and solves a number of instances that other solvers cannot solve. Furthermore, MaxCDCL, when combined with the best performing MaxSAT solvers, solves the highest number of instances of a collection from all the MaxSAT evaluations held so far.


2021 ◽  
Vol 8 (3) ◽  
pp. 1-18
Author(s):  
James Edwards ◽  
Uzi Vishkin

Boolean satisfiability (SAT) is an important performance-hungry problem with applications in many problem domains. However, most work on parallelizing SAT solvers has focused on coarse-grained, mostly embarrassing, parallelism. Here, we study fine-grained parallelism that can speed up existing sequential SAT solvers, which all happen to be of the so-called Conflict-Directed Clause Learning variety. We show the potential for speedups of up to 382× across a variety of problem instances. We hope that these results will stimulate future research, particularly with respect to a computer architecture open problem we present.


2021 ◽  
Author(s):  
S. Kochemazov

The Conflict-Driven Clause Learning algorithms for solving the Boolean satisfiability problem comprise the major part of the methods used to solve various instances of the problems that arise in industry and science. In recent years there have been proposed several major heuristics for these algorithms which are assumed to be de facto good for the solvers’ performance over diverse sets of benchmarks. The goal of this paper is to evaluate the contribution of each separate heuristic to the performance of a state-of-the-art solver, see the extent to which they are beneficial, and figure out if the heuristics have any particular features that need to be taken into account.


Author(s):  
Adnan Darwiche ◽  
Knot Pipatsrisawat

Complete SAT algorithms form an important part of the SAT literature. From a theoretical perspective, complete algorithms can be used as tools for studying the complexities of different proof systems. From a practical point of view, these algorithms form the basis for tackling SAT problems arising from real-world applications. The practicality of modern, complete SAT solvers undoubtedly contributes to the growing interest in the class of complete SAT algorithms. We review these algorithms in this chapter, including Davis-Putnum resolution, Stalmarck’s algorithm, symbolic SAT solving, the DPLL algorithm, and modern clause-learning SAT solvers. We also discuss the issue of certifying the answers of modern complete SAT solvers.


Author(s):  
Olaf Beyersdorff ◽  
Mikoláš Janota ◽  
Florian Lonsing ◽  
Martina Seidl

Solvers for quantified Boolean formulas (QBF) have become powerful tools for tackling hard computational problems from various application domains, even beyond the scope of SAT. This chapter gives a description of the main algorithmic paradigms for QBF solving, including quantified conflict driven clause learning (QCDCL), expansion-based solving, dependency schemes, and QBF preprocessing. Particular emphasis is laid on the connections of these solving approaches to QBF proof systems: Q-Resolution and its variants in the case of QCDCL, expansion QBF resolution calculi for expansion-based solving, and QRAT for preprocessing. The chapter also surveys the relations between the various QBF proof systems and results on their proof complexity, thereby shedding light on the diverse performance characteristics of different solving approaches that are observed in practice.


Author(s):  
Joao Marques-Silva ◽  
Ines Lynce ◽  
Sharad Malik

One of the most important paradigm shifts in the use of SAT solvers for solving industrial problems has been the introduction of clause learning. Clause learning entails adding a new clause for each conflict during backtrack search. This new clause prevents the same conflict from occurring again during the search process. Moreover, sophisticated techniques such as the identification of unique implication points in a graph of implications, allow creating clauses that more precisely identify the assignments responsible for conflicts. Learned clauses often have a large number of literals. As a result, another paradigm shift has been the development of new data structures, namely lazy data structures, which are particularly effective at handling large clauses. These data structures are called lazy due to being in general unable to provide the actual status of a clause. Efficiency concerns and the use of lazy data structures motivated the introduction of dynamic heuristics that do not require knowing the precise status of clauses. This chapter describes the ingredients of conflict-driven clause learning SAT solvers, namely conflict analysis, lazy data structures, search restarts, conflict-driven heuristics and clause deletion strategies.


Author(s):  
Sam Buss ◽  
Jakob Nordström

This chapter gives an overview of proof complexity and connections to SAT solving, focusing on proof systems such as resolution, Nullstellensatz, polynomial calculus, and cutting planes (corresponding to conflict-driven clause learning, algebraic approaches using linear algebra or Gröbner bases, and pseudo-Boolean solving, respectively). There is also a discussion of extended resolution (which is closely related to DRAT proof logging) and Frege and extended Frege systems more generally. An ample supply of references for further reading is provided, including for some topics omitted in this chapter.


2021 ◽  
Author(s):  
Vie’an Huzair Majalawa ◽  
Putranto Hadi Utomo ◽  
Tri Atmojo Kusmayadi ◽  
Diari Indriati

Author(s):  
ED ROBBINS ◽  
ANDY KING ◽  
JACOB M. HOWE

Abstract ISO Prolog provides catch and throw to realize the control flow of exception handling. This pearl demonstrates that catch and throw are inconspicuously amenable to the implementation of backjumping. In fact, they have precisely the semantics required: rewinding the search to a specific point and carrying of a preserved term to that point. The utility of these properties is demonstrated through an implementation of graph coloring with backjumping and a backjumping SAT solver that applies conflict-driven clause learning.


Sign in / Sign up

Export Citation Format

Share Document