LYM-Related AZ-Identities, Antichain Splittings and Correlation Inequalities

2007 ◽  
Vol 8 (8) ◽  
pp. 1461-1467 ◽  
Author(s):  
Pierluigi Contucci ◽  
Joel Lebowitz

1975 ◽  
Vol 41 (1) ◽  
pp. 19-32 ◽  
Author(s):  
Francesco Guerra ◽  
Lon Rosen ◽  
Barry Simon

1975 ◽  
Vol 54 (6) ◽  
pp. 428-430 ◽  
Author(s):  
H. Kunz ◽  
Ch.-Ed. Pfister ◽  
P.-A. Vuillermot

Order ◽  
1985 ◽  
Vol 2 (4) ◽  
pp. 387-402 ◽  
Author(s):  
Graham R. Brightwell

1996 ◽  
Vol 76 (12) ◽  
pp. 2196-2196 ◽  
Author(s):  
P. Horodecki ◽  
R. Horodecki

2018 ◽  
Vol 156 ◽  
pp. 22-43
Author(s):  
Ehud Friedgut ◽  
Jeff Kahn ◽  
Gil Kalai ◽  
Nathan Keller

2002 ◽  
Vol 257 (2-3) ◽  
pp. 311-327 ◽  
Author(s):  
Graham R. Brightwell ◽  
William T. Trotter

2016 ◽  
Vol 4 (3-4) ◽  
pp. 327-334 ◽  
Author(s):  
Geoffrey Grimmett

2002 ◽  
Vol 53 (3-4) ◽  
pp. 245-248
Author(s):  
Subir K. Bhandari ◽  
Ayanendranath Basu

Pitt's conjecture (1977) that P( A ∩ B) ≥ P( A) P( B) under the Nn (0, In) distribution of X, where A, B are symmetric convex sets in IRn still lacks a complete proof. This note establishes that the above result is true when A is a symmetric rectangle while B is any symmetric convex set, where A, B ∈ IRn. We give two different proofs of the result, the key component in the first one being a recent result by Hargé (1999). The second proof, on the other hand, is based on a rather old result of Šidák (1968), dating back a period before Pitt's conjecture.


Sign in / Sign up

Export Citation Format

Share Document