A Geometric Multigrid Solver on Tsubame 2.0

Author(s):  
Harald Köstler ◽  
Christian Feichtinger ◽  
Ulrich Rüde ◽  
Takayuki Aoki
2013 ◽  
Vol 16 (4) ◽  
pp. 151-164 ◽  
Author(s):  
Sebastian Reiter ◽  
Andreas Vogel ◽  
Ingo Heppner ◽  
Martin Rupp ◽  
Gabriel Wittum

Author(s):  
Jonas Schmitt ◽  
Sebastian Kuckuk ◽  
Harald Köstler

AbstractFor many systems of linear equations that arise from the discretization of partial differential equations, the construction of an efficient multigrid solver is challenging. Here we present EvoStencils, a novel approach for optimizing geometric multigrid methods with grammar-guided genetic programming, a stochastic program optimization technique inspired by the principle of natural evolution. A multigrid solver is represented as a tree of mathematical expressions that we generate based on a formal grammar. The quality of each solver is evaluated in terms of convergence and compute performance by automatically generating an optimized implementation using code generation that is then executed on the target platform to measure all relevant performance metrics. Based on this, a multi-objective optimization is performed using a non-dominated sorting-based selection. To evaluate a large number of solvers in parallel, they are distributed to multiple compute nodes. We demonstrate the effectiveness of our implementation by constructing geometric multigrid solvers that are able to outperform hand-crafted methods for Poisson’s equation and a linear elastic boundary value problem with up to 16 million unknowns on multi-core processors with Ivy Bridge and Broadwell microarchitecture.


2015 ◽  
Vol 52 (5) ◽  
pp. 1037-1049 ◽  
Author(s):  
Moisés Meza Pariona ◽  
Fabiane de Oliveira ◽  
Viviane Teleginski ◽  
Siliane Machado ◽  
Marcio Augusto Villela Pinto

We propose and investigate a mesh deformation technique for PDE constrained shape optimization. Introducing a gradient penalization to the inner product for linearized shape spaces, mesh degeneration can be prevented within the optimization iteration allowing for the scalability of employed solvers. We illustrate the approach by a shape optimization for cellular composites with respect to linear elastic energy under tension. The influence of the gradient penalization is evaluated and the parallel scalability of the approach demonstrated employing a geometric multigrid solver on hierarchically distributed meshes.


2014 ◽  
Vol 36 (2) ◽  
pp. C119-C138 ◽  
Author(s):  
M. Chanaud ◽  
L. Giraud ◽  
D. Goudin ◽  
J. J. Pesqué ◽  
J. Roman

Sign in / Sign up

Export Citation Format

Share Document