2021 ◽  
Vol 58 (4) ◽  
pp. 1131-1151
Author(s):  
Florin Avram ◽  
Bin Li ◽  
Shu Li

AbstractDrawdown/regret times feature prominently in optimal stopping problems, in statistics (CUSUM procedure), and in mathematical finance (Russian options). Recently it was discovered that a first passage theory with more general drawdown times, which generalize classic ruin times, may be explicitly developed for spectrally negative Lévy processes [9, 20]. In this paper we further examine the general drawdown-related quantities in the (upward skip-free) time-homogeneous Markov process, and then in its (general) tax process by noticing the pathwise connection between general drawdown and the tax process.


2010 ◽  
Vol 29 (2) ◽  
pp. 112-124
Author(s):  
Robert Liptser ◽  
Alexander G. Tartakovsky

Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the martingale problem and therefore the existence of the associated Markov process. The book uses an “integral kernel method” to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. The book establishes the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. It shows that the semigroups defined by these operators have holomorphic extensions to the right half plane. The book also demonstrates precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.


Author(s):  
Areski Cousin ◽  
Stéphane Crépey ◽  
Olivier Guéant ◽  
David Hobson ◽  
Monique Jeanblanc ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document