Paris-Princeton Lectures on Mathematical Finance 2010

Author(s):  
Areski Cousin ◽  
Stéphane Crépey ◽  
Olivier Guéant ◽  
David Hobson ◽  
Monique Jeanblanc ◽  
...  
Keyword(s):  
Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the martingale problem and therefore the existence of the associated Markov process. The book uses an “integral kernel method” to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. The book establishes the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. It shows that the semigroups defined by these operators have holomorphic extensions to the right half plane. The book also demonstrates precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.


2020 ◽  
Vol 14 (2) ◽  
Author(s):  
Jan Bauer

AbstractI study dynamic hedging for variable annuities under basis risk. Basis risk, which arises from the imperfect correlation between the underlying fund and the proxy asset used for hedging, has a highly negative impact on the hedging performance. In this paper, I model the financial market based on correlated geometric Brownian motions and analyze the risk management for a pool of stylized GMAB contracts. I investigate whether the choice of a suitable hedging strategy can help to reduce the risk for the insurance company. Comparing several cross-hedging strategies, I observe very similar hedging performances. Particularly, I find that well-established but complex strategies from mathematical finance do not outperform simple and naive approaches in the context studied. Diversification, however, could help to reduce the adverse impact of basis risk.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Yanli Zhou ◽  
Yonghong Wu ◽  
Xiangyu Ge ◽  
B. Wiwatanapataphee

Stochastic delay differential equations with jumps have a wide range of applications, particularly, in mathematical finance. Solution of the underlying initial value problems is important for the understanding and control of many phenomena and systems in the real world. In this paper, we construct a robust Taylor approximation scheme and then examine the convergence of the method in a weak sense. A convergence theorem for the scheme is established and proved. Our analysis and numerical examples show that the proposed scheme of high order is effective and efficient for Monte Carlo simulations for jump-diffusion stochastic delay differential equations.


2006 ◽  
Vol 168 (2) ◽  
pp. 279-280 ◽  
Author(s):  
Tadashi Dohi ◽  
Shunji Osaki ◽  
Nikolaos Limnios

2009 ◽  
Vol 39 (2) ◽  
pp. 515-539 ◽  
Author(s):  
Fei Lung Yuen ◽  
Hailiang Yang

AbstractNowadays, the regime switching model has become a popular model in mathematical finance and actuarial science. The market is not complete when the model has regime switching. Thus, pricing the regime switching risk is an important issue. In Naik (1993), a jump diffusion model with two regimes is studied. In this paper, we extend the model of Naik (1993) to a multi-regime case. We present a trinomial tree method to price options in the extended model. Our results show that the trinomial tree method in this paper is an effective method; it is very fast and easy to implement. Compared with the existing methodologies, the proposed method has an obvious advantage when one needs to price exotic options and the number of regime states is large. Various numerical examples are presented to illustrate the ideas and methodologies.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tanki Motsepa ◽  
Chaudry Masood Khalique ◽  
Motlatsi Molati

We carry out group classification of a general bond-option pricing equation. We show that the equation admits a three-dimensional equivalence Lie algebra. We also show that some of the values of the constants which result from group classification give us well-known models in mathematics of finance such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross. For all such values of these arbitrary constants we obtain Lie point symmetries. Symmetry reductions are then obtained and group invariant solutions are constructed for some cases.


Sign in / Sign up

Export Citation Format

Share Document