Material and structural limitations in a 3-D finite element model of the left ventricle

Author(s):  
Mordechai Perl ◽  
Arie Horowitz
1983 ◽  
Vol 16 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Alan Needleman ◽  
Stuart A. Rabinowitz ◽  
Daniel K. Bogen ◽  
Thomas A. McMahon

2019 ◽  
Vol 116 (3) ◽  
pp. 30a
Author(s):  
Charles K. Mann ◽  
Zhanqui Liu ◽  
Xiaoyan Zhang ◽  
Kenneth Campbell ◽  
Jonathan Wenk

2010 ◽  
Vol 89 (5) ◽  
pp. 1546-1553 ◽  
Author(s):  
Jonathan F. Wenk ◽  
Zhihong Zhang ◽  
Guangming Cheng ◽  
Deepak Malhotra ◽  
Gabriel Acevedo-Bolton ◽  
...  

1991 ◽  
Vol 24 (7) ◽  
pp. 527-538 ◽  
Author(s):  
Jacques M. Huyghe ◽  
Dick H. van Campen ◽  
Theo Arts ◽  
Robert M. Heethaar

2011 ◽  
Vol 30 (4) ◽  
pp. 915-927 ◽  
Author(s):  
Alexander I. Veress ◽  
W. Paul Segars ◽  
Benjamin M. W. Tsui ◽  
Grant T. Gullberg

1984 ◽  
Vol 6 (1) ◽  
pp. 48-59 ◽  
Author(s):  
P. E. Nikravesh ◽  
D. J. Skorton ◽  
K. B. Chandran ◽  
Y. M. Attarwala ◽  
N. Pandian ◽  
...  

A computerized method for the generation of a three-dimensional finite element mesh of left ventricular geometry is presented. The technique employs two dimensional echocardiographic images of the left ventricle. The echocardiographic transducer is attached to an articulated, computerassisted, position registration arm with six degrees-of-freedom. These six degrees-of-freedom record the location and orientation of the transducer, when images are obtained, referenced to an external point. Eence, the images are digitized and aligned relative to one another, then several interpolation and curve fitting steps are used to reconstruct a threedimensional finite element model of the left ventricle. The finite element model can be used for volume determination, stress analysis, material property identification, and other applications.


Sign in / Sign up

Export Citation Format

Share Document