Symmetric Groups and Quasi-Hereditary Algebras

Author(s):  
Karin Erdmann
Author(s):  
Ming Fang ◽  
Wei Hu ◽  
Steffen Koenig

AbstractGroup algebras of symmetric groups and their Hecke algebras are in Schur-Weyl duality with classical and quantised Schur algebras, respectively. Two homological dimensions, the dominant dimension and the global dimension, of the indecomposable summands (blocks) of these Schur algebras S(n, r) and $$S_q(n,r)$$ S q ( n , r ) with $$n \geqslant r$$ n ⩾ r are determined explicitly, using a result on derived invariance in Fang, Hu and Koenig (J Reine Angew Math 770:59–85, 2021).


2018 ◽  
Vol 293 (1-2) ◽  
pp. 677-723 ◽  
Author(s):  
Alexander Kleshchev ◽  
Lucia Morotti ◽  
Pham Huu Tiep
Keyword(s):  

2013 ◽  
Vol 20 (01) ◽  
pp. 123-140
Author(s):  
Teng Zou ◽  
Bin Zhu

For any positive integer n, we construct an n-repetitive generalized cluster complex (a simplicial complex) associated with a given finite root system by defining a compatibility degree on the n-repetitive set of the colored root system. This simplicial complex includes Fomin-Reading's generalized cluster complex as a special case when n=1. We also introduce the intermediate coverings (called generalized d-cluster categories) of d-cluster categories of hereditary algebras, and study the d-cluster tilting objects and their endomorphism algebras in those categories. In particular, we show that the endomorphism algebras of d-cluster tilting objects in the generalized d-cluster categories provide the (finite) coverings of the corresponding (usual) d-cluster tilted algebras. Moreover, we prove that the generalized d-cluster categories of hereditary algebras of finite representation type provide a category model for the n-repetitive generalized cluster complexes.


Sign in / Sign up

Export Citation Format

Share Document