Denting points in K�the-Bochner spaces

1994 ◽  
Vol 2 (3) ◽  
pp. 439-458 ◽  
Author(s):  
Charles Castaing ◽  
Ryszard Pluciennik
Keyword(s):  

1986 ◽  
Vol 53 (2) ◽  
pp. 163-190 ◽  
Author(s):  
W. M. Ruess ◽  
C. P. Stegall


1973 ◽  
Vol 180 ◽  
pp. 497-497 ◽  
Author(s):  
Surjit Singh Khurana
Keyword(s):  


1999 ◽  
Vol 127 (10) ◽  
pp. 2969-2973 ◽  
Author(s):  
T. S. S. R. K. Rao
Keyword(s):  


1978 ◽  
Vol 78 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Joseph Cima ◽  
James Roberts
Keyword(s):  


1986 ◽  
Vol 97 (4) ◽  
pp. 629 ◽  
Author(s):  
Bor-Luh Lin ◽  
Pei-Kee Lin
Keyword(s):  


1988 ◽  
Vol 102 (3) ◽  
pp. 526-526 ◽  
Author(s):  
Bor-Luh Lin ◽  
Pei-Kee Lin ◽  
S. L. Troyanski
Keyword(s):  


2007 ◽  
Vol 258 (2) ◽  
pp. 333-345 ◽  
Author(s):  
Eve Oja ◽  
Märt Põldvere
Keyword(s):  


1994 ◽  
Vol 63 (1) ◽  
pp. 45-55 ◽  
Author(s):  
A. Molt� ◽  
V. Montesinos ◽  
S. Troyanski
Keyword(s):  


1978 ◽  
Vol 18 (1) ◽  
pp. 105-123 ◽  
Author(s):  
J.R. Giles ◽  
D.A. Gregory ◽  
Brailey Sims

Normed linear spaces possessing the euclidean space property that every bounded closed convex set is an intersection of closed balls, are characterised as those with dual ball having weak* denting points norm dense in the unit sphere. A characterisation of Banach spaces whose duals have a corresponding intersection property is established. The question of the density of the strongly exposed points of the ball is examined for spaces with such properties.



Sign in / Sign up

Export Citation Format

Share Document