Spectral properties of a class of quadratic operator pencils

1981 ◽  
Vol 15 (2) ◽  
pp. 142-144
Author(s):  
A. I. Miloslavskii
1981 ◽  
Vol 30 (3) ◽  
pp. 676-684 ◽  
Author(s):  
A. A. Shkalikov

1991 ◽  
Vol 44 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Lawrence Barkwell ◽  
Peter Lancaster ◽  
Alexander S. Markus

AbstractEigenvalue problems for selfadjoint quadratic operator polynomials L(λ) = Iλ2 + Bλ+ C on a Hilbert space H are considered where B, C∈ℒ(H), C >0, and |B| ≥ kI + k-l C for some k >0. It is shown that the spectrum of L(λ) is real. The distribution of eigenvalues on the real line and other spectral properties are also discussed. The arguments rely on the well-known theory of (weakly) hyperbolic operator polynomials.


2001 ◽  
Vol 39 (2) ◽  
pp. 127-152 ◽  
Author(s):  
V. Adamjan ◽  
H. Langer ◽  
M. M�ller

2017 ◽  
Vol 145 (1) ◽  
pp. 47-95 ◽  
Author(s):  
Jonathan Eckhardt ◽  
Aleksey Kostenko

2020 ◽  
Vol 268 (7) ◽  
pp. 3848-3879
Author(s):  
Alim Sukhtayev ◽  
Kevin Zumbrun

Sign in / Sign up

Export Citation Format

Share Document