sturm liouville
Recently Published Documents


TOTAL DOCUMENTS

3256
(FIVE YEARS 507)

H-INDEX

49
(FIVE YEARS 6)

Author(s):  
Güher Özbey ◽  
yelda AYGAR ◽  
Basak Oznur

Scattering solutions and several properties of scattering function of a discrete Sturm-Liouville boundary value problem with point interaction (PBVP) are derived. Moreover, resolvent operator, continuous and discrete spectrum of this PBVP are investigated. An asymptotic equation is utilized to get the properties of eigenvalues. An example illustrating the main results is given.


2022 ◽  
Vol 7 (4) ◽  
pp. 4887-4897
Author(s):  
Youyu Wang ◽  
◽  
Xianfei Li ◽  
Yue Huang

<abstract><p>By using the operator theory, we establish the Green's function for Caputo fractional differential equation under Sturm-Liouville boundary conditions. The results are new, the method used in this paper will provide some new ideas for the study of this kind of problems and easy to be generalized to solving other problems.</p></abstract>


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Alex Mitchell ◽  
Tim R. Morris ◽  
Dalius Stulga

Abstract We study an f(R) approximation to asymptotic safety, using a family of non-adaptive cutoffs, kept general to test for universality. Matching solutions on the four-dimensional sphere and hyperboloid, we prove properties of any such global fixed point solution and its eigenoperators. For this family of cutoffs, the scaling dimension at large n of the nth eigenoperator, is λn ∝ b n ln n. The coefficient b is non-universal, a consequence of the single-metric approximation. The large R limit is universal on the hyperboloid, but not on the sphere where cutoff dependence results from certain zero modes. For right-sign conformal mode cutoff, the fixed points form at most a discrete set. The eigenoperator spectrum is quantised. They are square integrable under the Sturm-Liouville weight. For wrong sign cutoff, the fixed points form a continuum, and so do the eigenoperators unless we impose square-integrability. If we do this, we get a discrete tower of operators, infinitely many of which are relevant. These are f(R) analogues of novel operators in the conformal sector which were used recently to furnish an alternative quantisation of gravity.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Natanael Karjanto

This article deals with a special case of the Sturm–Liouville boundary value problem (BVP), an eigenvalue problem characterized by the Sturm–Liouville differential operator with unknown spectra and the associated eigenfunctions. By examining the BVP in the Schrödinger form, we are interested in the problem where the corresponding invariant function takes the form of a reciprocal quadratic form. We call this BVP the modified second Paine–de Hoog–Anderssen (PdHA) problem. We estimate the lowest-order eigenvalue without solving the eigenvalue problem but by utilizing the localized landscape and effective potential functions instead. While for particular combinations of parameter values that the spectrum estimates exhibit a poor quality, the outcomes are generally acceptable although they overestimate the numerical computations. Qualitatively, the eigenvalue estimate is strikingly excellent, and the proposal can be adopted to other BVPs.


Sign in / Sign up

Export Citation Format

Share Document