Characterization of the simple groups PSL(2,2n) and Sz(q) by biprimary subgroups

1970 ◽  
Vol 8 (1) ◽  
pp. 518-522
Author(s):  
V. A. Belonogov
Keyword(s):  

2015 ◽  
Vol 56 (1) ◽  
pp. 78-82 ◽  
Author(s):  
M. F. Ghasemabadi ◽  
A. Iranmanesh ◽  
F. Mavadatpour


1971 ◽  
Vol 5 (4) ◽  
pp. 805-814
Author(s):  
V A Belonogov


2009 ◽  
Vol 48 (6) ◽  
pp. 385-409 ◽  
Author(s):  
A. V. Vasil’ev ◽  
M. A. Grechkoseeva ◽  
V. D. Mazurov


1977 ◽  
Vol 45 (2) ◽  
pp. 306-320 ◽  
Author(s):  
A.R Prince
Keyword(s):  


2016 ◽  
Vol 45 (3) ◽  
pp. 337-363
Author(s):  
B. AKBARI ◽  
N. IIYORI ◽  
A. R. MOGHADDAMFAR




2014 ◽  
Vol 55 (4) ◽  
pp. 658-666
Author(s):  
P. Nosratpour ◽  
M. R. Darafsheh
Keyword(s):  


2017 ◽  
Vol 16 (11) ◽  
pp. 1750216 ◽  
Author(s):  
Jinshan Zhang ◽  
Changguo Shao ◽  
Zhencai Shen

Let [Formula: see text] be a finite group. A vanishing element of [Formula: see text] is an element [Formula: see text] such that [Formula: see text] for some irreducible complex character [Formula: see text] of [Formula: see text]. Denote by Vo[Formula: see text] the set of the orders of vanishing elements of [Formula: see text]. In this paper, we prove that if [Formula: see text] is a finite group such that Vo[Formula: see text], [Formula: see text], then [Formula: see text].



1992 ◽  
Vol 114 (3) ◽  
pp. 589-589 ◽  
Author(s):  
Wu Jie Shi
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document