Decision problems in classes of group presentations with uniformly solvable word problem

1981 ◽  
Vol 37 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Jody Lockhart
2002 ◽  
Vol 12 (01n02) ◽  
pp. 213-221 ◽  
Author(s):  
W. A. BOGLEY ◽  
J. HARLANDER

We show that for finitely generated groups P with solvable word problem, there is no algorithm to determine whether H1(P) is trivial, nor whether H2(P) is trivial.


1970 ◽  
Vol 22 (4) ◽  
pp. 836-838 ◽  
Author(s):  
James McCool

Let G be a finitely presented group with solvable word problem. It is of some interest to ask which other decision problems must necessarily be solvable for such a group. Thus it is easy to see that there exist effective procedures to determine whether or not such a group is trivial, or nilpotent of a given class. On the other hand, the conjugacy problem need not be solvable for such a group, for Fridman [5] has shown that the word problem is solvable for the group with unsolvable conjugacy problem given by Novikov [9].


1987 ◽  
Vol 30 (1) ◽  
pp. 86-91
Author(s):  
Seymour Lipschutz

AbstractA word W in a group G is a geodesic (weighted geodesic) if W has minimum length (minimum weight with respect to a generator weight function α) among all words equal to W. For finitely generated groups, the word problem is equivalent to the geodesic problem. We prove: (i) There exists a group G with solvable word problem, but unsolvable geodesic problem, (ii) There exists a group G with a solvable weighted geodesic problem with respect to one weight function α1, but unsolvable with respect to a second weight function α2. (iii) The (ordinary) geodesic problem and the free-product geodesic problem are independent.


Author(s):  
Isaac Goldbring ◽  
Bradd Hart

Abstract We show that the following operator algebras have hyperarithmetic theory: the hyperfinite II$_1$ factor $\mathcal R$, $L(\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C^*(\varGamma )$ for $\varGamma $ a finitely presented group, $C^*_\lambda (\varGamma )$ for $\varGamma $ a finitely generated group with solvable word problem, $C(2^\omega )$ and $C(\mathbb P)$ (where $\mathbb P$ is the pseudoarc). We also show that the Cuntz algebra $\mathcal O_2$ has a hyperarithmetic theory provided that the Kirchberg embedding problems have affirmative answers. Finally, we prove that if there is an existentially closed (e.c.) II$_1$ factor (resp. $\textrm{C}^*$-algebra) that does not have hyperarithmetic theory, then there are continuum many theories of e.c. II$_1$ factors (resp. e.c. $\textrm{C}^*$-algebras).


2003 ◽  
Vol 13 (03) ◽  
pp. 287-302 ◽  
Author(s):  
André Nies

For various proper inclusions of classes of groups [Formula: see text], we obtain a group [Formula: see text] and a first-order sentence φ such that H⊨φ but no G∈ C satisfies φ. The classes we consider include the finite, finitely presented, finitely generated with and without solvable word problem, and all countable groups. For one separation, we give an example of a f.g. group, namely ℤp ≀ ℤ for some prime p, which is the only f.g. group satisfying an appropriate first-order sentence. A further example of such a group, the free step-2 nilpotent group of rank 2, is used to show that true arithmetic Th(ℕ,+,×) can be interpreted in the theory of the class of finitely presented groups and other classes of f.g. groups.


Author(s):  
J. C. Gómez-Larrañaga ◽  
F. González-Acuña ◽  
Wolfgang Heil

1993 ◽  
Vol 21 (10) ◽  
pp. 3571-3609
Author(s):  
O. Kharlampovich ◽  
D. Gildenhuys

1970 ◽  
Vol 21 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Donald J. Collins

Sign in / Sign up

Export Citation Format

Share Document