Unit-distance graphs, graphs on the integer lattice and a Ramsey type result

1995 ◽  
Vol 49 (1) ◽  
pp. 319-319
Author(s):  
Kiran B. Chilakamarri ◽  
Carolyn R. Mahoney
1996 ◽  
Vol 51 (1-2) ◽  
pp. 48-67
Author(s):  
Kiran B. Chilakamarri ◽  
Carolyn R. Mahoney

2004 ◽  
Vol 33 (1) ◽  
pp. 117-123 ◽  
Author(s):  
Geoffrey Exoo

1996 ◽  
Vol 12 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Michael Reid

2019 ◽  
Vol 101 (3) ◽  
pp. 362-366
Author(s):  
YEVHEN ZELENYUK ◽  
YULIYA ZELENYUK

We show that for all $m,k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever $L$ is a Latin square of order $m$ and the Cartesian product $L^{n}$ of $n$ copies of $L$ is $r$-coloured, there is a monochrome Latin subsquare of $L^{n}$, isotopic to $L^{k}$. In particular, for every prime $p$ and for all $k,r\in \mathbb{N}$, there is an $n\in \mathbb{N}$ such that whenever the multiplication table $L({\mathbb{Z}_{p}}^{n})$ of the group ${\mathbb{Z}_{p}}^{n}$ is $r$-coloured, there is a monochrome Latin subsquare of order $p^{k}$. On the other hand, we show that for every group $G$ of order $\leq 15$, there is a 2-colouring of $L(G)$ without a nontrivial monochrome Latin subsquare.


2016 ◽  
Vol 10 ◽  
pp. 1611-1618
Author(s):  
Severino V. Gervacio ◽  
Hiroshi Maehara ◽  
Joselito A. Uy

2006 ◽  
Vol 53 (3) ◽  
pp. 196-208 ◽  
Author(s):  
Noga Alon ◽  
Radoš Radoičić ◽  
Benny Sudakov ◽  
Jan Vondrák
Keyword(s):  

1993 ◽  
Vol 59 (1) ◽  
pp. 156-160 ◽  
Author(s):  
K.B. Chilakamarri

Sign in / Sign up

Export Citation Format

Share Document