Large deviations of sums of independent random variables from the domain of attraction of a stable law

1999 ◽  
Vol 93 (3) ◽  
pp. 421-435
Author(s):  
L. V. Rozovskii
2012 ◽  
Vol 12 (01) ◽  
pp. 1150002 ◽  
Author(s):  
ISTVÁN BERKES ◽  
LAJOS HORVÁTH ◽  
JOHANNES SCHAUER

Trimming is a standard method to decrease the effect of large sample elements in statistical procedures, used, e.g., for constructing robust estimators. It is also a powerful tool in understanding deeper properties of partial sums of independent random variables. In this paper we review some basic results of the theory and discuss new results in the central limit theory of trimmed sums. In particular, we show that for random variables in the domain of attraction of a stable law with parameter 0 < α < 2, the asymptotic behavior of modulus trimmed sums depends sensitively on the number of elements eliminated from the sample. We also show that under moderate trimming, the central limit theorem always holds if we allow random centering factors. Finally, we give an application to change point problems.


1987 ◽  
Vol 101 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Erich Haeusler ◽  
David M. Mason

AbstractLet X1, X2, …, be a sequence of independent random variables with common distribution function F in the domain of attraction of a stable law and, for each n ≥ 1, let X1, n ≤ … ≤ Xn, n denote the order statistics based on the first n of these random variables. It is shown that sums of the middle portion of the order statistics of the form , where (kn)n ≥ 1 is a sequence of non-negative integers such that kn → ∞ and kn/n → 0 as n → ∞ at an appropriate rate, can be normalized and centred so that the law of the iterated logarithm holds. The method of proof is based on the almost sure properties of weighted uniform empirical processes.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


Sign in / Sign up

Export Citation Format

Share Document