large deviations
Recently Published Documents


TOTAL DOCUMENTS

2821
(FIVE YEARS 366)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Vol 134 ◽  
pp. 102306
Author(s):  
Steven Soojin Kim ◽  
Yin-Ting Liao ◽  
Kavita Ramanan
Keyword(s):  

Author(s):  
Hsiu-Chung Yeh ◽  
Dimitri M Gangardt ◽  
A Kamenev

Abstract We study large deviations in interacting quantum liquids with the polytropic equation of state P (ρ) ∼ ργ, where ρ is density and P is pressure. By solving hydrodynamic equations in imaginary time we evaluate the instanton action and calculate the emptiness formation probability (EFP), the probability that no particle resides in a macroscopic interval of a given size. Analytic solutions are found for a certain infinite sequence of rational polytropic indexes γ and the result can be analytically continued to any value of γ ≥ 1. Our findings agree with (and significantly expand on) previously known analytical and numerical results for EFP in quantum liquids. We also discuss interesting universal spacetime features of the instanton solution.


2022 ◽  
Vol 2022 (1) ◽  
pp. 013206
Author(s):  
Cécile Monthus

Abstract The large deviations at level 2.5 are applied to Markov processes with absorbing states in order to obtain the explicit extinction rate of metastable quasi-stationary states in terms of their empirical time-averaged density and of their time-averaged empirical flows over a large time-window T. The standard spectral problem for the slowest relaxation mode can be recovered from the full optimization of the extinction rate over all these empirical observables and the equivalence can be understood via the Doob generator of the process conditioned to survive up to time T. The large deviation properties of any time-additive observable of the Markov trajectory before extinction can be derived from the level 2.5 via the decomposition of the time-additive observable in terms of the empirical density and the empirical flows. This general formalism is described for continuous-time Markov chains, with applications to population birth–death model in a stable or in a switching environment, and for diffusion processes in dimension d.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Victor Vargas

<p style='text-indent:20px;'>Consider <inline-formula><tex-math id="M2">\begin{document}$ \beta &gt; 1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \lfloor \beta \rfloor $\end{document}</tex-math></inline-formula> its integer part. It is widely known that any real number <inline-formula><tex-math id="M4">\begin{document}$ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $\end{document}</tex-math></inline-formula> can be represented in base <inline-formula><tex-math id="M5">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> using a development in series of the form <inline-formula><tex-math id="M6">\begin{document}$ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M7">\begin{document}$ x = (x_n)_{n \geq 1} $\end{document}</tex-math></inline-formula> is a sequence taking values into the alphabet <inline-formula><tex-math id="M8">\begin{document}$ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $\end{document}</tex-math></inline-formula>. The so called <inline-formula><tex-math id="M9">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift, denoted by <inline-formula><tex-math id="M10">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula>, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy <inline-formula><tex-math id="M11">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M12">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>. Fixing a Hölder continuous potential <inline-formula><tex-math id="M13">\begin{document}$ A $\end{document}</tex-math></inline-formula>, we show an explicit expression for the main eigenfunction of the Ruelle operator <inline-formula><tex-math id="M14">\begin{document}$ \psi_A $\end{document}</tex-math></inline-formula>, in order to obtain a natural extension to the bilateral <inline-formula><tex-math id="M15">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-shift of its corresponding Gibbs state <inline-formula><tex-math id="M16">\begin{document}$ \mu_A $\end{document}</tex-math></inline-formula>. Our main goal here is to prove a first level large deviations principle for the family <inline-formula><tex-math id="M17">\begin{document}$ (\mu_{tA})_{t&gt;1} $\end{document}</tex-math></inline-formula> with a rate function <inline-formula><tex-math id="M18">\begin{document}$ I $\end{document}</tex-math></inline-formula> attaining its maximum value on the union of the supports of all the maximizing measures of <inline-formula><tex-math id="M19">\begin{document}$ A $\end{document}</tex-math></inline-formula>. The above is proved through a technique using the representation of <inline-formula><tex-math id="M20">\begin{document}$ \Sigma_\beta $\end{document}</tex-math></inline-formula> and its bilateral extension <inline-formula><tex-math id="M21">\begin{document}$ \widehat{\Sigma_\beta} $\end{document}</tex-math></inline-formula> in terms of the quasi-greedy <inline-formula><tex-math id="M22">\begin{document}$ \beta $\end{document}</tex-math></inline-formula>-expansion of <inline-formula><tex-math id="M23">\begin{document}$ 1 $\end{document}</tex-math></inline-formula> and the so called involution kernel associated to the potential <inline-formula><tex-math id="M24">\begin{document}$ A $\end{document}</tex-math></inline-formula>.</p>


2022 ◽  
Vol 5 (1) ◽  
pp. 1-12
Author(s):  
Giada Basile ◽  
◽  
Dario Benedetto ◽  
Emanulele Caglioti ◽  
Lorenzo Bertini

<abstract><p>We analyze the large deviations for a discrete energy Kac-like walk. In particular, we exhibit a path, with probability exponentially small in the number of particles, that looses energy.</p></abstract>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Weijun Ma ◽  
Wei Liu ◽  
Quanxin Zhu ◽  
Kaibo Shi

This paper examines the dynamics of the exponential population growth system with mixed fractional Brownian motion. First, we establish some useful lemmas that provide powerful tools for studying the stochastic differential equations with mixed fractional Brownian motion. We offer some explicit expressions and numerical characteristics such as mathematical expectation and variance of the solutions of the exponential population growth system with mixed fractional Brownian motion. Second, we propose two sufficient and necessary conditions for the almost sure exponential stability and the k th moment exponential stability of the solution of the constant coefficient exponential population growth system with mixed fractional Brownian motion. Furthermore, we conduct some large deviation analysis of this mixed fractional population growth system. To the best of the authors’ knowledge, this is the first paper to investigate how the Hurst index affects the exponential stability and large deviations in the biological population system. It is interesting that the phenomenon of large deviations always occurs for addressed system when 1 / 2 < H < 1 . Moreover, several numerical simulations are reported to show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document