Complete problems and strong polynomial reducibilities

Author(s):  
K. Ganesan ◽  
Steven Homer
Keyword(s):  
Author(s):  
Wenhong Tian ◽  
Wenxia Guo ◽  
Majun He

2021 ◽  
Vol 17 (3) ◽  
pp. 1-38
Author(s):  
Ali Bibak ◽  
Charles Carlson ◽  
Karthekeyan Chandrasekaran

Finding locally optimal solutions for MAX-CUT and MAX- k -CUT are well-known PLS-complete problems. An instinctive approach to finding such a locally optimum solution is the FLIP method. Even though FLIP requires exponential time in worst-case instances, it tends to terminate quickly in practical instances. To explain this discrepancy, the run-time of FLIP has been studied in the smoothed complexity framework. Etscheid and Röglin (ACM Transactions on Algorithms, 2017) showed that the smoothed complexity of FLIP for max-cut in arbitrary graphs is quasi-polynomial. Angel, Bubeck, Peres, and Wei (STOC, 2017) showed that the smoothed complexity of FLIP for max-cut in complete graphs is ( O Φ 5 n 15.1 ), where Φ is an upper bound on the random edge-weight density and Φ is the number of vertices in the input graph. While Angel, Bubeck, Peres, and Wei’s result showed the first polynomial smoothed complexity, they also conjectured that their run-time bound is far from optimal. In this work, we make substantial progress toward improving the run-time bound. We prove that the smoothed complexity of FLIP for max-cut in complete graphs is O (Φ n 7.83 ). Our results are based on a carefully chosen matrix whose rank captures the run-time of the method along with improved rank bounds for this matrix and an improved union bound based on this matrix. In addition, our techniques provide a general framework for analyzing FLIP in the smoothed framework. We illustrate this general framework by showing that the smoothed complexity of FLIP for MAX-3-CUT in complete graphs is polynomial and for MAX - k - CUT in arbitrary graphs is quasi-polynomial. We believe that our techniques should also be of interest toward showing smoothed polynomial complexity of FLIP for MAX - k - CUT in complete graphs for larger constants k .


2013 ◽  
Vol 14 (8) ◽  
pp. 623-633
Author(s):  
Jorge A. Ruiz-Vanoye ◽  
Joaquín Pérez-Ortega ◽  
Rodolfo A. Pazos Rangel ◽  
Ocotlán Díaz-Parra ◽  
Héctor J. Fraire-Huacuja ◽  
...  

1997 ◽  
Vol 172 (1-2) ◽  
pp. 195-207 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
Sebastiaan A. Terwijn ◽  
Zheng Xizhong
Keyword(s):  

1993 ◽  
Vol 18 (1) ◽  
pp. 65-92
Author(s):  
Iain A. Stewart

We consider three sub-logics of the logic (±HP)*[FOs] and show that these sub-logics capture the complexity classes obtained by considering logspace deterministic oracle Turing machines with oracles in NP where the number of oracle calls is unrestricted and constant, respectively; that is, the classes LNP and LNP[O(1)]. We conclude that if certain logics are of the same expressibility then the Polynomial Hierarchy collapses. We also exhibit some new complete problems for the complexity class LNP via projection translations (the first to be discovered: projection translations are extremely weak logical reductions between problems) and characterize the complexity class LNP[O(1)] as the closure of NP under a new, extremely strict truth-table reduction (which we introduce in this paper).


2010 ◽  
Vol 10 (1&2) ◽  
pp. 141-151
Author(s):  
S. Beigi

Although it is believed unlikely that $\NP$-hard problems admit efficient quantum algorithms, it has been shown that a quantum verifier can solve NP-complete problems given a "short" quantum proof; more precisely, NP\subseteq QMA_{\log}(2) where QMA_{\log}(2) denotes the class of quantum Merlin-Arthur games in which there are two unentangled provers who send two logarithmic size quantum witnesses to the verifier. The inclusion NP\subseteq QMA_{\log}(2) has been proved by Blier and Tapp by stating a quantum Merlin-Arthur protocol for 3-coloring with perfect completeness and gap 1/24n^6. Moreover, Aaronson et al. have shown the above inclusion with a constant gap by considering $\widetilde{O}(\sqrt{n})$ witnesses of logarithmic size. However, we still do not know if QMA_{\log}(2) with a constant gap contains NP. In this paper, we show that 3-SAT admits a QMA_{\log}(2) protocol with the gap 1/n^{3+\epsilon}} for every constant \epsilon>0.


2000 ◽  
Vol 30 (4) ◽  
pp. 1197-1210 ◽  
Author(s):  
Jack H. Lutz ◽  
Yong Zhao
Keyword(s):  

Author(s):  
Dexter C. Kozen

Sign in / Sign up

Export Citation Format

Share Document