scholarly journals Curvature of quaternionic Kähler manifolds with $$S^1$$-symmetry

Author(s):  
V. Cortés ◽  
A. Saha ◽  
D. Thung

AbstractWe study the behavior of connections and curvature under the HK/QK correspondence, proving simple formulae expressing the Levi-Civita connection and Riemann curvature tensor on the quaternionic Kähler side in terms of the initial hyper-Kähler data. Our curvature formula refines a well-known decomposition theorem due to Alekseevsky. As an application, we compute the norm of the curvature tensor for a series of complete quaternionic Kähler manifolds arising from flat hyper-Kähler manifolds. We use this to deduce that these manifolds are of cohomogeneity one.

2019 ◽  
pp. 37-51
Author(s):  
Steven Carlip

This chapter develops tensor calculus: integration on manifolds, Cartan calculus for differential forms, connections and covariant derivatives, and the Levi-Civita connection used in general relativity. It then introduces the Riemann curvature tensor in several different ways, including the most directly physical picture of the curvature as a measure of the convergence of neighboring geodesics. The chapter concludes with a discussion of Cartan’s beautiful formulation of the connection and curvature in the language of differential forms.


1999 ◽  
Vol 10 (05) ◽  
pp. 541-570 ◽  
Author(s):  
ANDREW DANCER ◽  
ANDREW SWANN

Classification results are given for (i) compact quaternionic Kähler manifolds with a cohomogeneity-one action of a semi-simple group, (ii) certain complete hyperKähler manifolds with a cohomogeneity-two action of a semi-simple group preserving each complex structure, (iii) compact 3-Sasakian manifolds which are cohomogeneity one with respect to a group of 3-Sasakian symmetries. Information is also obtained about non-compact quaternionic Kähler manifolds of cohomogeneity one and the cohomogeneity of adjoint orbits in complex semi-simple Lie algebras.


2005 ◽  
Vol 250 (3) ◽  
pp. 523-537
Author(s):  
Jiayu Li ◽  
Xi Zhang

1996 ◽  
Vol 143 ◽  
pp. 31-57
Author(s):  
Koji Tojo

Let (M, g) be a Kähler C-space. R and ∇ denote the curvature tensor and the Levi-Civita connection of (M, g), respectively.In [6], Takagi have proved that there exists an integer n such that


2020 ◽  
Vol 58 (3) ◽  
pp. 291-323
Author(s):  
Chandrashekar Devchand ◽  
Massimiliano Pontecorvo ◽  
Andrea Spiro

Sign in / Sign up

Export Citation Format

Share Document