Complete Hypersurfaces with Constant Mean Curvature in a Unit Sphere

2006 ◽  
Vol 149 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Guoxin Wei
2011 ◽  
Vol 54 (1) ◽  
pp. 67-75 ◽  
Author(s):  
QIN ZHANG

AbstractLet Mn be an n-dimensional closed hypersurface with constant mean curvature H satisfying |H| ≤ ϵ(n) in a unit sphere Sn+1(1), n ≤ 8 and S the square of the length of the second fundamental form of M. There exists a constant δ(n, H) > 0, which depends only on n and H such that if S0 ≤ S ≤ S0 + δ(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ϵ(n) is a sufficiently small constant depending on n and $S_0=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4+4(n-1)H^2}$.


1994 ◽  
Vol 118 (3-4) ◽  
pp. 171-204 ◽  
Author(s):  
Qing-Ming Cheng ◽  
Qian-Rong Wan

2011 ◽  
Vol 22 (01) ◽  
pp. 131-143 ◽  
Author(s):  
GANGYI CHEN ◽  
HAIZHONG LI

Let M be an n-dimensional closed hypersurface with constant mean curvature H in a unit sphere Sn+1, n ≤ 8, and S the squared length of the second fundamental form of M. If |H| ≤ ε(n), then there exists a positive constant α(n, H), which depends only on n and H, such that if S0 ≤ S ≤ S0 + α(n, H), then S ≡ S0 and M is isometric to a Clifford hypersurface, where ε(n) is a positive constant depending only on n and [Formula: see text].


Author(s):  
Qing-Ming Cheng

In this paper we investigate three-dimensional complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form M4(c) (c ≤ 0). We prove that if the scalar curvature of a such hypersurface is bounded from below, then its Gauss-Kronecker curvature vanishes identically. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space E4 and the hyperbolic space H4(c) with vanishing Gauss-Kronecker curvature are also presented. It is also proved that totally umbilical hypersurfaces are the only complete hypersurfaces with non-zero constant mean curvature and with zero quasi-Gauss-Kronecker curvature in a space form M4(c) (c ≤ 0) if the scalar curvature is bounded from below. In particular, we classify complete hypersurfaces with constant mean curvature and with constant quasi-Gauss-Kronecker curvature in a space form M4(c) (c ≤ 0) if the scalar curvature r satisfies r≥ ⅔c.


Sign in / Sign up

Export Citation Format

Share Document