New Families in the Stable Homotopy of Spheres Revisited

2002 ◽  
Vol 18 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Jin Kun Lin
1987 ◽  
Vol 101 (3) ◽  
pp. 477-485 ◽  
Author(s):  
Wen-Hsiung Lin

The classical Adams spectral sequence [1] has been an important tool in the computation of the stable homotopy groups of spheres . In this paper we make another contribution to this computation.


2018 ◽  
Vol 39 (5) ◽  
pp. 849-860
Author(s):  
Xiugui Liu ◽  
Jianming Xiao ◽  
Da Zheng

2008 ◽  
Vol 39 (1) ◽  
pp. 75-83
Author(s):  
Liu Xiugui ◽  
Jin Yinglong

To determine the stable homotopy groups of spheres is one of the central problems in homotopy theory. Let $ A $ be the mod $ p $ Steenrod algebra and $S$ the sphere spectrum localized at an odd prime $ p $. In this article, it is proved that for $ p\geqslant 7 $, $ n\geqslant 4 $ and $ 3\leqslant s $, $ b_0 h_1 h_n \tilde{\gamma}_{s} \in Ext_A^{s+4,\ast}(\mathbb{Z}_p,\mathbb{Z}_p) $ is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order $ p $ in the stable homotopy groups of spheres $ \pi_{p^nq+sp^{2}q+(s+1)pq+(s-2)q-7}S $, where $ q=2(p-1 ) $.


Sign in / Sign up

Export Citation Format

Share Document