Efficient estimation methods for non-Gaussian regression models in continuous time

Author(s):  
Evgeny Pchelintsev ◽  
Serguei Pergamenshchikov ◽  
Maria Povzun
Biometrika ◽  
2013 ◽  
Vol 100 (2) ◽  
pp. 459-471 ◽  
Author(s):  
N. G. Polson ◽  
J. G. Scott

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fumin Zhu ◽  
Michele Leonardo Bianchi ◽  
Young Shin Kim ◽  
Frank J. Fabozzi ◽  
Hengyu Wu

AbstractThis paper studies the option valuation problem of non-Gaussian and asymmetric GARCH models from a state-space structure perspective. Assuming innovations following an infinitely divisible distribution, we apply different estimation methods including filtering and learning approaches. We then investigate the performance in pricing S&P 500 index short-term options after obtaining a proper change of measure. We find that the sequential Bayesian learning approach (SBLA) significantly and robustly decreases the option pricing errors. Our theoretical and empirical findings also suggest that, when stock returns are non-Gaussian distributed, their innovations under the risk-neutral measure may present more non-normality, exhibit higher volatility, and have a stronger leverage effect than under the physical measure.


Author(s):  
Tim Loossens ◽  
Kristof Meers ◽  
Niels Vanhasbroeck ◽  
Nil Anarat ◽  
Stijn Verdonck ◽  
...  

AbstractComputational modeling plays an important role in a gamut of research fields. In affect research, continuous-time stochastic models are becoming increasingly popular. Recently, a non-linear, continuous-time, stochastic model has been introduced for affect dynamics, called the Affective Ising Model (AIM). The drawback of non-linear models like the AIM is that they generally come with serious computational challenges for parameter estimation and related statistical analyses. The likelihood function of the AIM does not have a closed form expression. Consequently, simulation based or numerical methods have to be considered in order to evaluate the likelihood function. Additionally, the likelihood function can have multiple local minima. Consequently, a global optimization heuristic is required and such heuristics generally require a large number of likelihood function evaluations. In this paper, a Julia software package is introduced that is dedicated to fitting the AIM. The package includes an implementation of a numeric algorithm for fast computations of the likelihood function, which can be run both on graphics processing units (GPU) and central processing units (CPU). The numerical method introduced in this paper is compared to the more traditional Euler-Maruyama method for solving stochastic differential equations. Furthermore, the estimation software is tested by means of a recovery study and estimation times are reported for benchmarks that were run on several computing devices (two different GPUs and three different CPUs). According to these results, a single parameter estimation can be obtained in less than thirty seconds using a mainstream NVIDIA GPU.


Sign in / Sign up

Export Citation Format

Share Document