Meromorphic Functions with Finite Growth Index on Complex Discs Sharing Values or Pairs of Values

Author(s):  
S. D. Quang
2011 ◽  
Vol 63 (1-2) ◽  
pp. 557-565 ◽  
Author(s):  
Zong-Xuan Chen ◽  
Hong-Xun Yi

2019 ◽  
Vol 69 (1) ◽  
pp. 99-110
Author(s):  
Weichuan Lin ◽  
Shengjiang Chen ◽  
Xiaoman Gao

Abstract We prove a periodic theorem of meromorphic functions of hyper-order ρ2(f) < 1. As an application, we obtain the corresponding uniqueness theorem on periodic meromorphic functions. In addition, we show the accuracy of the results by giving some examples.


2007 ◽  
Vol 332 (2) ◽  
pp. 1087-1096
Author(s):  
Chang-Jun Li ◽  
Xiao-Min Li ◽  
Li-Mei Wang

2008 ◽  
Vol 48 (4) ◽  
pp. 623-636
Author(s):  
Xiao-Min Li ◽  
Hong-Xun Yi

2011 ◽  
Vol 109 (2) ◽  
pp. 240 ◽  
Author(s):  
Hong-Yan Xu ◽  
Cai-Feng Yi ◽  
Ting-Bin Cao

We investigate the uniqueness problem for meromorphic functions in the unit disc sharing four distinct values and one set in an angular domain, and obtain some relations between the Borel points and shared values of meromorphic functions in an angular domain. These results improve the theorem of Mao-Liu [10].


2018 ◽  
Vol 45 (2) ◽  
pp. 321-334 ◽  
Author(s):  
Z. Gao ◽  
R. Korhonen ◽  
J. Zhang ◽  
Y. Zhang

Sign in / Sign up

Export Citation Format

Share Document