A Lagrangian heuristic algorithm for a public healthcare facility location problem

2013 ◽  
Vol 206 (1) ◽  
pp. 221-240 ◽  
Author(s):  
Dong-Guen Kim ◽  
Yeong-Dae Kim
2019 ◽  
Vol 8 (2) ◽  
pp. 18-50 ◽  
Author(s):  
Soumen Atta ◽  
Priya Ranjan Sinha Mahapatra ◽  
Anirban Mukhopadhyay

A well-known combinatorial optimization problem, known as the uncapacitated facility location problem (UFLP) is considered in this article. A deterministic heuristic algorithm and a randomized heuristic algorithm are presented to solve UFLP. Though the proposed deterministic heuristic algorithm is very simple, it produces good solution for each instance of UFLP considered in this article. The main purpose of this article is to process all the data sets of UFLP available in the literature using a single algorithm. The proposed two algorithms are applied on these test instances of UFLP to determine their effectiveness. Here, the solution obtained from the proposed randomized algorithm is at least as good as the solution produced by the proposed deterministic algorithm. Hence, the proposed deterministic algorithm gives upper bound on the solution produced by the randomized algorithm. Although the proposed deterministic algorithm gives optimal results for most of the instances of UFLP, the randomized algorithm achieves optimal results for all the instances of UFLP considered in this article including those for which the deterministic algorithm fails to achieve the optimal solutions.


Algorithmica ◽  
2021 ◽  
Author(s):  
Alexander Grigoriev ◽  
Tim A. Hartmann ◽  
Stefan Lendl ◽  
Gerhard J. Woeginger

AbstractWe study a continuous facility location problem on a graph where all edges have unit length and where the facilities may also be positioned in the interior of the edges. The goal is to position as many facilities as possible subject to the condition that any two facilities have at least distance $$\delta$$ δ from each other. We investigate the complexity of this problem in terms of the rational parameter $$\delta$$ δ . The problem is polynomially solvable, if the numerator of $$\delta$$ δ is 1 or 2, while all other cases turn out to be NP-hard.


Sign in / Sign up

Export Citation Format

Share Document