Antipodal covers of distance-transitive generalized polygons

2017 ◽  
Vol 48 (4) ◽  
pp. 607-626
Author(s):  
M. R. Alfuraidan ◽  
J. I. Hall ◽  
A. Laradji
Keyword(s):  
1981 ◽  
Vol 10 (1-4) ◽  
pp. 451-458 ◽  
Author(s):  
A. Yanushka
Keyword(s):  

COMBINATORICA ◽  
2009 ◽  
Vol 29 (5) ◽  
pp. 569-594 ◽  
Author(s):  
Beukje Temmermans ◽  
Joseph A. Thas ◽  
Hendrik Van Maldeghem
Keyword(s):  

1989 ◽  
Vol 21 (3) ◽  
pp. 235-242 ◽  
Author(s):  
A. Delgado ◽  
R. Weiss
Keyword(s):  

1995 ◽  
Vol 58 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Michael Joswig

2001 ◽  
Vol 76 (1) ◽  
pp. 7-11 ◽  
Author(s):  
K. Tent
Keyword(s):  

10.37236/1972 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Lam ◽  
Jacques Verstraëte

In this note, we show that any $n$-vertex graph without even cycles of length at most $2k$ has at most ${1\over2}n^{1 + 1/k} + O(n)$ edges, and polarity graphs of generalized polygons show that this is asymptotically tight when $k \in \{2,3,5\}$.


Sign in / Sign up

Export Citation Format

Share Document