The Electronic Journal of Combinatorics
Latest Publications


TOTAL DOCUMENTS

4213
(FIVE YEARS 679)

H-INDEX

32
(FIVE YEARS 3)

Published By The Electronic Journal Of Combinatorics

1077-8926

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Brahadeesh Sankarnarayanan ◽  
Niranjan Balachandran

We show that for loopless $6$-regular triangulations on the torus the gap between the choice number and chromatic number is at most $2$. We also show that the largest gap for graphs embeddable in an orientable surface of genus $g$ is of the order $\Theta(\sqrt{g})$, and moreover for graphs with chromatic number of the order $o(\sqrt{g}/\log_{2}(g))$ the largest gap is of the order $o(\sqrt{g})$.


10.37236/9564 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Dhruv Rohatgi ◽  
John C. Urschel ◽  
Jake Wellens

For a graph $G$, let $cp(G)$ denote the minimum number of cliques of $G$ needed to cover the edges of $G$ exactly once. Similarly, let $bp_k(G)$ denote the minimum number of bicliques (i.e. complete bipartite subgraphs of $G$) needed to cover each edge of $G$ exactly $k$ times. We consider two conjectures – one regarding the maximum possible value of $cp(G) + cp(\overline{G})$ (due to de Caen, Erdős, Pullman and Wormald) and the other regarding $bp_k(K_n)$ (due to de Caen, Gregory and Pritikin). We disprove the first, obtaining improved lower and upper bounds on $\max_G cp(G) + cp(\overline{G})$, and we prove an asymptotic version of the second, showing that $bp_k(K_n) = (1+o(1))n$.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Shishuo Fu ◽  
Zhicong Lin ◽  
Yaling Wang

A di-sk tree is a rooted binary tree whose nodes are labeled by $\oplus$ or $\ominus$, and no node has the same label as its right child. The di-sk trees are in natural bijection with separable permutations. We construct a combinatorial bijection on di-sk trees proving  the two quintuples $(\mathrm{LMAX},\mathrm{LMIN},\mathrm{DESB},\mathsf{iar},\mathsf{comp})$ and $(\mathrm{LMAX},\mathrm{LMIN},\mathrm{DESB},\mathsf{comp},\mathsf{iar})$ have the same distribution over separable permutations. Here for a permutation $\pi$, $\mathrm{LMAX}(\pi)/\mathrm{LMIN}(\pi)$ is the set of values of the left-to-right maxima/minima of $\pi$ and $\mathrm{DESB}(\pi)$ is the set of descent bottoms of $\pi$, while $\mathsf{comp}(\pi)$ and $\mathsf{iar}(\pi)$ are respectively  the number of components of $\pi$ and the length of initial ascending run of $\pi$.  Interestingly, our bijection specializes to a bijection on $312$-avoiding permutations, which provides  (up to the classical Knuth–Richards bijection) an alternative approach to a result of Rubey (2016) that asserts the  two triples $(\mathrm{LMAX},\mathsf{iar},\mathsf{comp})$ and $(\mathrm{LMAX},\mathsf{comp},\mathsf{iar})$ are equidistributed  on $321$-avoiding permutations. Rubey's result is a symmetric extension of an equidistribution due to Adin–Bagno–Roichman, which implies the class of $321$-avoiding permutations with a prescribed number of components is Schur positive.  Some equidistribution results for various statistics concerning tree traversal are presented in the end.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Manuel Aprile ◽  
Samuel Fiorini ◽  
Tony Huynh ◽  
Gwenaël Joret ◽  
David R. Wood

Let $G$ be a connected $n$-vertex graph in a proper minor-closed class $\mathcal G$. We prove that the extension complexity of the spanning tree polytope of $G$ is $O(n^{3/2})$. This improves on the $O(n^2)$ bounds following from the work of Wong (1980) and Martin (1991). It also extends a result of Fiorini, Huynh, Joret, and Pashkovich (2017), who obtained a $O(n^{3/2})$ bound for graphs embedded in a fixed surface. Our proof works more generally for all graph classes admitting strongly sublinear balanced separators: We prove that for every constant $\beta$ with $0<\beta<1$, if $\mathcal G$ is a graph class closed under induced subgraphs such that all $n$-vertex graphs in $\mathcal G$ have balanced separators of size $O(n^\beta)$, then the extension complexity of the spanning tree polytope of every connected $n$-vertex graph in $\mathcal{G}$ is $O(n^{1+\beta})$. We in fact give two proofs of this result, one is a direct construction of the extended formulation, the other is via communication protocols. Using the latter approach we also give a short proof of the $O(n)$ bound for planar graphs due to Williams (2002).


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ying Ying Tan ◽  
Xiaoye Liang ◽  
Jack Koolen

In the survey paper by Van Dam, Koolen and Tanaka (2016), they asked to classify the thin $Q$-polynomial distance-regular graphs. In this paper, we show that a thin distance-regular graph with the same intersection numbers as a Grassmann graph $J_q(n, D)~ (n \geqslant 2D)$ is the Grassmann graph if $D$ is large enough.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ademir Hujdurović ◽  
Đorđe Mitrović ◽  
Dave Witte Morris

A graph $X$ is said to be unstable if the direct product $X \times K_2$ (also called the canonical double cover of $X$) has automorphisms that do not come from automorphisms of its factors $X$ and $K_2$. It is nontrivially unstable if it is unstable, connected, and nonbipartite, and no two distinct vertices of $X$ have exactly the same neighbors. We find three new conditions that each imply a circulant graph is unstable. (These yield infinite families of nontrivially unstable circulant graphs that were not previously known.) We also find all of the nontrivially unstable circulant graphs of order $2p$, where $p$ is any prime number. Our results imply that there does not exist a nontrivially unstable circulant graph of order $n$ if and only if either $n$ is odd, or $n < 8$, or $n = 2p$, for some prime number $p$ that is congruent to $3$ modulo $4$.


10.37236/9014 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Benjamin Gunby ◽  
Maxwell Fishelson

A classic result of Marcus and Tardos (previously known as the Stanley-Wilf conjecture) bounds from above the number of $n$-permutations ($\sigma \in S_n$) that do not contain a specific sub-permutation. In particular, it states that for any fixed permutation $\pi$, the number of $n$-permutations that avoid $\pi$ is at most exponential in $n$. In this paper, we generalize this result. We bound the number of avoidant $n$-permutations even if they only have to avoid $\pi$ at specific indices. We consider a $k$-uniform hypergraph $\Lambda$ on $n$ vertices and count the $n$-permutations that avoid $\pi$ at the indices corresponding to the edges of $\Lambda$. We analyze both the random and deterministic hypergraph cases. This problem was originally proposed by Asaf Ferber. When $\Lambda$ is a random hypergraph with edge density $\alpha$, we show that the expected number of $\Lambda$-avoiding $n$-permutations is bounded (both upper and lower) as $\exp(O(n))\alpha^{-\frac{n}{k-1}}$, using a supersaturation version of F\"{u}redi-Hajnal. In the deterministic case we show that, for $\Lambda$ containing many size $L$ cliques, the number of $\Lambda$-avoiding $n$-permutations is $O\left(\frac{n\log^{2+\epsilon}n}{L}\right)^n$, giving a nontrivial bound with $L$ polynomial in $n$. Our main tool in the analysis of this deterministic case is the new and revolutionary hypergraph containers method, developed in papers of Balogh-Morris-Samotij and Saxton-Thomason.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Kyungyong Lee ◽  
George D. Nasr ◽  
Jamie Radcliffe

We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.


10.37236/9252 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Yuki Irie

The $P$-position sets of some combinatorial games have special combinatorial structures. For example, the $P$-position set of the hexad game, first investigated by Conway and Ryba, is the block set of the Steiner system $S(5, 6, 12)$ in the shuffle numbering, denoted by $D_{\text{sh}}$. However, few games were known to be related to Steiner systems in this way. For a given Steiner system, we construct a game whose $P$-position set is its block set. By using constructed games, we obtain the following two results. First, we characterize $D_{\text{sh}}$ among the 5040 isomorphic $S(5, 6, 12)$ with point set $\{0, 1, ..., 11\}$. For each $S(5, 6, 12)$, our construction produces a game whose $P$-position set is its block set. From $D_{\text{sh}}$, we obtain the hexad game, and this game is characterized as the unique game with the minimum number of positions among the obtained 5040 games. Second, we characterize projective Steiner triple systems by using game distributions. Here, the game distribution of a Steiner system $D$ is the frequency distribution of the numbers of positions in games obtained from Steiner systems isomorphic to $D$. We find that the game distribution of an $S(t, t + 1, v)$ can be decomposed into symmetric components and that a Steiner triple system is projective if and only if its game distribution has a unique symmetric component.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Monu Kadyan ◽  
Bikash Bhattacharjya

A mixed graph is said to be integral if all the eigenvalues of its Hermitian adjacency matrix are integer. Let $\Gamma$ be an abelian group. The mixed Cayley graph $Cay(\Gamma,S)$ is a mixed graph on the vertex set $\Gamma$ and edge set $\left\{ (a,b): b-a\in S \right\}$, where $0\not\in S$. We characterize integral mixed Cayley graph $Cay(\Gamma,S)$ over an abelian group $\Gamma$ in terms of its connection set $S$.


Sign in / Sign up

Export Citation Format

Share Document