Approximative properties of the three-harmonic Poisson integrals on the classes $$ {W}_{\beta}^r{H}^{\alpha } $$

Author(s):  
Ulyana Z. Hrabova ◽  
Inna V. Kal’chuk ◽  
Leontii I. Filozof
Keyword(s):  

1980 ◽  
Vol 95 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Luis Gonzáles ◽  
Eckart Keller ◽  
Günther Wildenhain
Keyword(s):  




1998 ◽  
Vol 160 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Francisco J Freniche ◽  
Juan Carlos Garcı́a-Vázquez ◽  
Luis Rodrı́guez-Piazza


2002 ◽  
Vol 11 (6) ◽  
pp. 523-528 ◽  
Author(s):  
Luo Shao-Kai ◽  
Chen Xiang-Wei ◽  
Guo Yong-Xin


Author(s):  
Arsen M. Shutovskyi ◽  
Vasyl Ye. Sakhnyuk
Keyword(s):  


2020 ◽  
Vol 17 (4) ◽  
pp. 538-548
Author(s):  
Ulyana Hrabova ◽  
Inna Kal'chuk ◽  
Leontii Filozof

We obtained the asymptotic equalities for the least upper bounds of the approximation of functions from the classes $W^{r}_{\beta}H^{\alpha}$ by three-harmonic Poisson integrals in the case $r+\alpha\leq 3$ in the uniform metric.



Sign in / Sign up

Export Citation Format

Share Document