scholarly journals A Strengthened Monotonicity Inequality of Quantum Relative Entropy: A Unifying Approach Via Rényi Relative Entropy

2016 ◽  
Vol 106 (4) ◽  
pp. 557-573 ◽  
Author(s):  
Lin Zhang
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1423
Author(s):  
Javier Bonilla ◽  
Daniel Vélez ◽  
Javier Montero ◽  
J. Tinguaro Rodríguez

In the last two decades, information entropy measures have been relevantly applied in fuzzy clustering problems in order to regularize solutions by avoiding the formation of partitions with excessively overlapping clusters. Following this idea, relative entropy or divergence measures have been similarly applied, particularly to enable that kind of entropy-based regularization to also take into account, as well as interact with, cluster size variables. Particularly, since Rényi divergence generalizes several other divergence measures, its application in fuzzy clustering seems promising for devising more general and potentially more effective methods. However, previous works making use of either Rényi entropy or divergence in fuzzy clustering, respectively, have not considered cluster sizes (thus applying regularization in terms of entropy, not divergence) or employed divergence without a regularization purpose. Then, the main contribution of this work is the introduction of a new regularization term based on Rényi relative entropy between membership degrees and observation ratios per cluster to penalize overlapping solutions in fuzzy clustering analysis. Specifically, such Rényi divergence-based term is added to the variance-based Fuzzy C-means objective function when allowing cluster sizes. This then leads to the development of two new fuzzy clustering methods exhibiting Rényi divergence-based regularization, the second one extending the first by considering a Gaussian kernel metric instead of the Euclidean distance. Iterative expressions for these methods are derived through the explicit application of Lagrange multipliers. An interesting feature of these expressions is that the proposed methods seem to take advantage of a greater amount of information in the updating steps for membership degrees and observations ratios per cluster. Finally, an extensive computational study is presented showing the feasibility and comparatively good performance of the proposed methods.


2018 ◽  
Vol 64 (7) ◽  
pp. 4758-4765 ◽  
Author(s):  
Angela Capel ◽  
Angelo Lucia ◽  
David Perez-Garcia

2019 ◽  
Vol 31 (07) ◽  
pp. 1950022
Author(s):  
Anna Vershynina

We consider a quantum quasi-relative entropy [Formula: see text] for an operator [Formula: see text] and an operator convex function [Formula: see text]. We show how to obtain the error bounds for the monotonicity and joint convexity inequalities from the recent results for the [Formula: see text]-divergences (i.e. [Formula: see text]). We also provide an error term for a class of operator inequalities, that generalizes operator strong subadditivity inequality. We apply those results to demonstrate explicit bounds for the logarithmic function, that leads to the quantum relative entropy, and the power function, which gives, in particular, a Wigner–Yanase–Dyson skew information. In particular, we provide the remainder terms for the strong subadditivity inequality, operator strong subadditivity inequality, WYD-type inequalities, and the Cauchy–Schwartz inequality.


2019 ◽  
Vol 100 (1) ◽  
Author(s):  
Jiyong Park ◽  
Jaehak Lee ◽  
Kyunghyun Baek ◽  
Se-Wan Ji ◽  
Hyunchul Nha

2004 ◽  
Vol 247 (3) ◽  
pp. 697-712 ◽  
Author(s):  
Igor Bjelakovic ◽  
Rainer Siegmund-Schultze

2003 ◽  
Vol 15 (01) ◽  
pp. 79-91 ◽  
Author(s):  
DÉNES PETZ

Monotonicity under coarse-graining is a crucial property of the quantum relative entropy. The aim of this paper is to investigate the condition of equality in the monotonicity theorem and in its consequences as the strong sub-additivity of von Neumann entropy, the Golden–Thompson trace inequality and the monotonicity of the Holevo quantitity. The relation to quantum Markov states is briefly indicated.


2017 ◽  
Vol 18 (5) ◽  
pp. 1777-1788 ◽  
Author(s):  
Alexander Müller-Hermes ◽  
David Reeb

Sign in / Sign up

Export Citation Format

Share Document