Scaled three-term derivative-free methods for solving large-scale nonlinear monotone equations

Author(s):  
Qun Li ◽  
Bing Zheng
Author(s):  
Mompati Koorapetse ◽  
P Kaelo ◽  
S Kooepile-Reikeletseng

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry's conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 168 ◽  
Author(s):  
Zhifeng Dai ◽  
Huan Zhu

The goal of this paper is to extend the modified Hestenes-Stiefel method to solve large-scale nonlinear monotone equations. The method is presented by combining the hyperplane projection method (Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.)Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers. 1998, 355-369) and the modified Hestenes-Stiefel method in Dai and Wen (Dai, Z.; Wen, F. Global convergence of a modified Hestenes-Stiefel nonlinear conjugate gradient method with Armijo line search. Numer Algor. 2012, 59, 79-93). In addition, we propose a new line search for the derivative-free method. Global convergence of the proposed method is established if the system of nonlinear equations are Lipschitz continuous and monotone. Preliminary numerical results are given to test the effectiveness of the proposed method.


2019 ◽  
Vol 24 (4) ◽  
pp. 550-563
Author(s):  
Mompati Koorapetse ◽  
Professor Kaelo

A new three-term conjugate gradient-based projection method is presented in this paper for solving large-scale nonlinear monotone equations. This method is derivative-free and it is suitable for solving large-scale nonlinear monotone equations due to its lower storage requirements. The method satisfies the sufficient descent condition FTkdk ≤ −τ‖Fk‖2, where τ > 0 is a constant, and its global convergence is also established. Numerical results show that the method is efficient and promising.


Sign in / Sign up

Export Citation Format

Share Document