monotone equations
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 51)

H-INDEX

14
(FIVE YEARS 5)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Abdulkarim Hassan Ibrahim ◽  
Poom Kumam ◽  
Auwal Bala Abubakar ◽  
Jamilu Abubakar

AbstractIn recent times, various algorithms have been incorporated with the inertial extrapolation step to speed up the convergence of the sequence generated by these algorithms. As far as we know, very few results exist regarding algorithms of the inertial derivative-free projection method for solving convex constrained monotone nonlinear equations. In this article, the convergence analysis of a derivative-free iterative algorithm (Liu and Feng in Numer. Algorithms 82(1):245–262, 2019) with an inertial extrapolation step for solving large scale convex constrained monotone nonlinear equations is studied. The proposed method generates a sufficient descent direction at each iteration. Under some mild assumptions, the global convergence of the sequence generated by the proposed method is established. Furthermore, some experimental results are presented to support the theoretical analysis of the proposed method.


Author(s):  
Samir Adly ◽  
Hedy Attouch ◽  
Van Nam Vo

AbstractIn a Hilbert space $\mathcal{H}$ H , we study a dynamic inertial Newton method which aims to solve additively structured monotone equations involving the sum of potential and nonpotential terms. Precisely, we are looking for the zeros of an operator $A= \nabla f +B $ A = ∇ f + B , where ∇f is the gradient of a continuously differentiable convex function f and B is a nonpotential monotone and cocoercive operator. Besides a viscous friction term, the dynamic involves geometric damping terms which are controlled respectively by the Hessian of the potential f and by a Newton-type correction term attached to B. Based on a fixed point argument, we show the well-posedness of the Cauchy problem. Then we show the weak convergence as $t\to +\infty $ t → + ∞ of the generated trajectories towards the zeros of $\nabla f +B$ ∇ f + B . The convergence analysis is based on the appropriate setting of the viscous and geometric damping parameters. The introduction of these geometric dampings makes it possible to control and attenuate the known oscillations for the viscous damping of inertial methods. Rewriting the second-order evolution equation as a first-order dynamical system enables us to extend the convergence analysis to nonsmooth convex potentials. These results open the door to the design of new first-order accelerated algorithms in optimization taking into account the specific properties of potential and nonpotential terms. The proofs and techniques are original and differ from the classical ones due to the presence of the nonpotential term.


Author(s):  
Mompati Koorapetse ◽  
P Kaelo ◽  
S Kooepile-Reikeletseng

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry's conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.


2021 ◽  
Vol 37 (3) ◽  
pp. 361-380
Author(s):  
JAMILU ABUBAKAR ◽  
◽  
POOM KUMAM ◽  
ABOR ISA GARBA ◽  
MUHAMMAD SIRAJO ABDULLAHI ◽  
...  

Variational inclusion is an important general problem consisting of many useful problems like variational inequality, minimization problem and nonlinear monotone equations. In this article, a new scheme for solving variational inclusion problem is proposed and the scheme uses inertial and relaxation techniques. Moreover, the scheme is self adaptive, that is, the stepsize does not depend on the factorial constants of the underlying operator, instead it can be computed using a simple updating rule. Weak convergence analysis of the iterates generated by the new scheme is presented under mild conditions. In addition, schemes for solving variational inequality problem and split feasibility problem are derived from the proposed scheme and applied in solving Nash-Cournot equilibrium problem and image restoration. Experiments to illustrate the implementation and potential applicability of the proposed schemes in comparison with some existing schemes in the literature are presented.


Sign in / Sign up

Export Citation Format

Share Document