scholarly journals A study of defect-based error estimates for the Krylov approximation of φ-functions

Author(s):  
Tobias Jawecki

AbstractPrior recent work, devoted to the study of polynomial Krylov techniques for the approximation of the action of the matrix exponential etAv, is extended to the case of associated φ-functions (which occur within the class of exponential integrators). In particular, a posteriori error bounds and estimates, based on the notion of the defect (residual) of the Krylov approximation are considered. Computable error bounds and estimates are discussed and analyzed. This includes a new error bound which favorably compares to existing error bounds in specific cases. The accuracy of various error bounds is characterized in relation to corresponding Ritz values of A. Ritz values yield properties of the spectrum of A (specific properties are known a priori, e.g., for Hermitian or skew-Hermitian matrices) in relation to the actual starting vector v and can be computed. This gives theoretical results together with criteria to quantify the achieved accuracy on the fly. For other existing error estimates, the reliability and performance are studied by similar techniques. Effects of finite precision (floating point arithmetic) are also taken into account.

2016 ◽  
Vol 8 (2) ◽  
pp. 1
Author(s):  
Rola Ali Ahmad ◽  
Toufic El Arwadi ◽  
Houssam Chrayteh ◽  
Jean-Marc Sac-Epee

In this article we claim that we are going to give a priori and a posteriori error estimates for a Crank Nicolson type scheme. The problem is discretized by the finite elements in space. The main result of this paper consists in establishing two types of error indicators, the first one linked to the time discretization and the second one to the space discretization.


Author(s):  
MANI MEHRA ◽  
B. V. RATHISH KUMAR

In this paper, we develop a priori and a posteriori error estimates for wavelet-Taylor–Galerkin schemes introduced in Refs. 6 and 7 (particularly wavelet Taylor–Galerkin scheme based on Crank–Nicolson time stepping). We proceed in two steps. In the first step, we construct the priori estimates for the fully discrete problem. In the second step, we construct error indicators for posteriori estimates with respect to both time and space approximations in order to use adaptive time steps and wavelet adaptivity. The space error indicator is computed using the equivalent norm expressed in terms of wavelet coefficients.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1599
Author(s):  
Stoil I. Ivanov

In this paper, we prove two general convergence theorems with error estimates that give sufficient conditions to guarantee the local convergence of the Picard iteration in arbitrary normed fields. Thus, we provide a unified approach for investigating the local convergence of Picard-type iterative methods for simple and multiple roots of nonlinear equations. As an application, we prove two new convergence theorems with a priori and a posteriori error estimates about the Super-Halley method for multiple polynomial zeros.


Sign in / Sign up

Export Citation Format

Share Document