a posteriori error
Recently Published Documents


TOTAL DOCUMENTS

1775
(FIVE YEARS 303)

H-INDEX

69
(FIVE YEARS 6)

2021 ◽  
Vol 36 (6) ◽  
pp. 313-336
Author(s):  
Ronald H. W. Hoppe ◽  
Youri Iliash

Abstract We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the p-Laplace equation and an equilibrated a posteriori error estimator. The IPDG method can be derived from a discretization of the associated minimization problem involving appropriately defined reconstruction operators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W 1,p norm and relies on the construction of an equilibrated flux in terms of a numerical flux function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results illustrate the performance of both estimators.


Author(s):  
Gang Bao ◽  
Xue Jiang ◽  
Peijun Li ◽  
Xiaokai Yuan

Consider the scattering of a time-harmonic elastic plane wave by a bi-periodic rigid surface. The displacement of elastic wave motion is modeled by the three-dimensional Navier equation in an unbounded domain above the surface. Based on the Dirichlet-to-Neumann (DtN) operator, which is given as an infinite series, an exact transparent boundary condition is introduced and the scattering problem is formulated equivalently into a boundary value problem in a bounded domain. An a posteriori error estimate based adaptive finite element DtN method is proposed to solve the discrete variational problem where the DtN operator is truncated into a finite number of terms. The a posteriori error estimate takes account of the finite element approximation error and the truncation error of the DtN operator which is shown to decay exponentially with respect to the truncation parameter. Numerical experiments are presented to illustrate the effectiveness of the proposed method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vivette Girault ◽  
María González ◽  
Frédéric Hecht

Abstract We derive optimal reliability and efficiency of a posteriori error estimates for the steady Stokes problem, with a nonhomogeneous Dirichlet boundary condition, solved by a stable enriched Galerkin scheme (EG) of order one on triangular or quadrilateral meshes in ℝ2, and tetrahedral or hexahedral meshes in ℝ3.


Sign in / Sign up

Export Citation Format

Share Document